2.3 Families of Functions, Transformations, and Symmetry

Tim Busken

Graduate Teacher
Department of Mathematics
San Diego State University
Dynamical Systems Program

January 25th, 2011
Definition

If the graph of any function has origin symmetry, then for any point \((x,y)\) on the graph, there is also a point \((-x,-y)\) on the graph.

Figure: The graph of \(f(x) = x^3\) is an example of a function that has origin symmetry.
Definition

If the graph of any function has \textit{y-axis symmetry}, then for every point \((x,y)\), there is also a point \((-x,y)\) on the graph.

Figure: \(f(x) = x^2\) is an example of a function that has \textit{y-axis symmetry}.
Definition

The graph of a relation has **x-axis symmetry** if for every point \((x, y)\) on the graph, the point \((x, -y)\) is also on the graph.

Figure: \(x = y^2\) is an example of a relation that has \(y\)-axis symmetry.

Can a function have \(x\)-axis symmetry?
Example 1: Does \(x = y^2 - 1 \) have y-axis symmetry, origin symmetry, x-axis symmetry, or no symmetry?

Counterexample: \((x, y) = (3, 2)\) is a solution to the equation \(x = y^2 - 1 \) since \(3 = 2^2 - 1 \). If the graph of \(x = y^2 - 1 \) had origin symmetry, then \((-3, -2)\) would be a solution to \(x = y^2 - 1 \), but it is not since \(-3 \neq (-2)^2 - 1\). So the graph of the relation cannot have origin symmetry.

![Graph of \(y = x^3 \)](image)

Figure: The graph of \(f(x) = x^3 \) is an example of a function that has origin symmetry.
Example 1: Does \(x = y^2 - 1 \) have y-axis symmetry, origin symmetry, x-axis symmetry, or no symmetry?

Counterexample: We know that \((x, y) = (3,2)\) is a solution to the equation \(x = y^2 - 1 \). If the graph of \(x = y^2 - 1 \) had y-axis symmetry, then \((-3,2)\) would be a solution to \(x = y^2 - 1 \), but it is not since \(-3 \neq (2)^2 - 1\). So the graph cannot have y-axis symmetry.

Figure: \(f(x) = x^2 \) is an example of a function that has y-axis symmetry.
Example: Does $x = y^2 - 1$ have y-axis symmetry, origin symmetry, x-axis symmetry, or no symmetry?

Definition

The graph of a relation has \textit{x-axis symmetry} if for every point (x, y) on the graph of the relation, the point $(x, -y)$ is also on the graph.
Example: Does \(x = y^2 - 1 \) have y-axis symmetry, origin symmetry, x-axis symmetry, or no symmetry? Give me an algebraic proof.

Proof: To algebraically prove that \(x = y^2 - 1 \) has x-axis symmetry, we need to show that for every point \((x, y)\) on the graph of \(x = y^2 - 1 \), the point \((x, -y)\) is also on the graph. Suppose \(a \) and \(b \) are any real numbers such that \((a, b)\) is a solution to the equation \(x = y^2 - 1 \). Substitution of \((a, b)\) into the equation \(x = y^2 - 1 \) leads to the result:

\[
a = b^2 - 1 \quad \text{or} \quad a + 1 = b^2 \quad \text{or} \quad b = \pm \sqrt{a + 1}
\]

This means that for every point on the graph \((a, \sqrt{a + 1})\), there is a complimentary point \((a, -\sqrt{a + 1})\) also on the graph. Therefore the graph of \(x = y^2 - 1 \) has x-axis symmetry, by definition.
Even and Odd Functions and Functions that are Neither

Definition

A function $f(x)$ can be classified as (one of the following):

1. Even
2. Odd
3. Neither Even Nor Odd

Figure: A function that is neither: $f(x) = x(x - 2)^2$
Definition

A function is **EVEN** if its graph has y axis symmetry. If substitution of \(-x\) for \(x\) leads to the same equation, i.e., \(f(-x) = f(x)\), then \(f\) is an even function.

Example: An Even Function
Determine if the function \(f(x) = x^2 - 3\) is an even function.

1. First replace the \(x\) in \(f(x)\) with \(-x\).

\[f(-x) = (-x)^2 - 3 = x^2 - 3\]

2. Now simplify \(f(-x)\)

\[f(-x) = (-x)^2 - 3 = x^2 - 3 = f(x)\]

3. Result: Since \(f(-x) = f(x)\), the given function, \(f\), is an even function, which means it has y-axis symmetry. (note: read the definition of an even function again.)
Definition

A function is **ODD** if its graph has origin symmetry. If substitution of \(-x\) for \(x\) leads to the negative version of \(f\), i.e., \(f(-x) = -f(x)\), then \(f\) is an odd function.

Example: An Odd Function
Consider the function \(f(x) = 4x^3 - x\). Test to see if \(f\) is an odd function.

1. First replace the \(x\) in \(f(x)\) with \(-x\).

\[
f(-x) = 4(-x)^3 - (-x)
\]

2. Now simplify \(f(-x)\)

\[
f(-x) = 4(-x)^3 - (-x) = -4x^3 + x = -1(4x^3 - x) = -f(x)
\]

3. Result: Since \(f(-x) = -f(x)\), the given function, \(f\), is an odd function, and it has origin symmetry.
Example: Of a function that is neither Even nor Odd
Function Test the function $f(x) = -x^7 - 3$ for x or y axis symmetry.

1. First we will test to see if the function is even:

 $f(-x) = -(-x)^7 - 3 = -(-x^7) - 3 = x^7 - 3 \neq f(x)$

 Therefore since $f(-x) \neq f(x)$, it follows that $f(x)$ is NOT an even function.

2. Now we will test to see if the function is odd:

 $f(-x) = -(-x)^7 - 3 = -(-x^7) - 3 = x^7 - 3 \neq -f(x)$

 Therefore since $f(-x) \neq -f(x)$, it follows that $f(x)$ is NOT an odd function.

Hence the function $f(x)$ is neither even nor odd. Moreover we can conclude that the graph of f does not have any symmetry.
Definition

If a, c, and d are real numbers with $a \neq 0$, then $y = a \cdot f(x - c) + d$ is a **transformation** of the **parent** function $y = f(x)$.

Figure: The graph of $y = \sqrt[3]{x}$

All of the transformations of a function **form a family of functions**. For example, any function of the form $y = a\sqrt[3]{x - c} + d$ is in the cube root family of functions (with **parent** function $f(x) = \sqrt[3]{x}$).
Vertical Shifts of Graphs

Theorem

Suppose \(d \) is a positive number and \(f(x) \) is a function. Then

- The graph of \(y = f(x) + d \) is the graph of \(y = f(x) \) shifted vertically upward \(d \) units.

![Diagram of vertical shifts of graphs](image)

Figure: The graphs of \(f(x) = x(x - 2)^2 \) and \(f(x) + d \) are given in the left panel; and the graphs of \(f(x) = x^2 \) and \(g(x) = x^2 + 2 \) are presented in the right panel above.
Theorem

Suppose d is a positive number and $f(x)$ is a function. Then

- The graph of $y = f(x) - d$ is the graph of $y = f(x)$ shifted vertically downward d units.

Figure: The graphs of $f(x) = x(x - 2)^2$ and $f(x) - d$ are given in the left panel; and the graphs of $f(x) = x^2$ and $g(x) = x^2 - 2$ are presented in the right panel above.
Theorem

Let c be a positive number. Then

- The graph of $y = f(x + c)$ is the graph of $y = f(x)$ shifted to the left c units.

Note that this is counterintuitive.

Figure: The graphs of $f(x) = x(x - 2)^2$ and $f(x + c)$ are given in the left panel; and the graphs of $f(x) = x^2$ and $g(x) = (x + 2)^2$ are presented in the right panel above.
Theorem

Let c be a positive real number. Then

- The graph of $y = f(x - c)$ is the graph of $y = f(x)$ shifted to the right c units.

Note that this is counterintuitive.

Figure: The graphs of $f(x) = x(x - 2)^2$ and $f(x + c)$ are given in the left panel; and the graphs of $f(x) = x^2$ and $g(x) = (x - 2)^2$ are presented in the right panel above.
Theorem

The graph of \(g(x) = -f(x) \) is reflection of \(f(x) \) about the x-axis.

Figure: Graphs of \(f(x) = x^2 \) and \(g(x) = -x^2 \).
Magnification

Definition
Suppose \(a \) is a positive number. The graph of \(g(x) = af(x) \) is called a **magnification** of \(f(x) \).

Theorem
The magnification of \(y = a \cdot f(x) \) is expanded horizontally whenever \(0 < a < 1 \) and compressed horizontally whenever \(a > 1 \).

Figure: (left) \(y = ax^2 \) and \(0 < a < 1 \) (right) \(y = ax^2 \) and \(a \geq 1 \).
Reflection and Magnification

Figure: $y = ax^2$, $a \leq -1$, and $y = ax^2$, $-1 < a < 0$
Consider the function g defined by

$$g(x) = a \cdot f(x - c) + d$$

where a, c, and d are real numbers.

Then

1. $g(x)$ is the “generalized” child graph of parent graph $f(x)$.
2. c represents the horizontal translation of f.
3. a represents the reflection/magnification of f.
4. d represents the vertical translation of f.

Definition (Multiple Transformations Graphing Algorithm)

Consider the function g defined by

$$g(x) = a \cdot f(x - c) + d$$

where a, c, and d are real numbers.

In order to graph $g(x)$ it is recommended to take the following steps:

1. Identify and graph the parent graph $f(x)$, of $g(x)$. Select two or three points on the parent graph to shift (follow the evolution of) in steps 2-4.

2. (c) Translate (or shift) the selected points c units horizontally, i.e. apply $f(x \pm c)$.

3. (a) Reflect/magnify the points in the previous graph by multiplying each y-coordinate by “a.”

4. (d) Translate (or shift) the points in the previous graph vertically d units.

Note: If you are asked to graph, for example, $f(x) = -3 \sqrt[3]{x - 1} + 1$, then you should rename $f(x)$ and give it the new name of $g(x)$. Then find g’s parent graph (it’s $f(x) = \sqrt[3]{x}$ for this example).
Classroom Examples Use the theory on translations to graph

1. $g(x) = -2\sqrt{x - 1} + 1$

2. $g(x) = -2|x + 2| - 3$

3. $g(x) = (x - 1)^2 - 2$.

Then use the graph to find the solution set to $g(x) \geq 0$.

After graphing each function, state the domain and range of the function, intervals for which the function is increasing or decreasing, and a pair of limit statements describing the end behavior of each graph.
Use translations to graph: \(g(x) = -3 \cdot 3^{\sqrt{x - 1}} + 1 \)

Step 1: identify and graph the parent function: \(f(x) = 3^{\sqrt{x}} \). We select two or three points on the parent graph to shift (follow the evolution of) in steps 2-4. Select, for example, the points \((-8, -2), (0, 0), \) and \((8, 2)\).

<table>
<thead>
<tr>
<th>(x)</th>
<th>(f(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>-8</td>
<td>-2</td>
</tr>
</tbody>
</table>

Step 2: graph: \(g_1(x) = 3^{\sqrt{x - 1}} = f(x - 1) \). Shift the selected points horizontally \(c = 1 \) unit right. (Alternatively, add one to each \(x \) value in the table, and \(y \) values stay the same.)
Use translations to graph: \(g(x) = -3 \cdot 3^{\sqrt[3]{x-1}} + 1 \)

Step 2: graph: \(g_1(x) = 3^{\sqrt[3]{x-1}} = f(x-1) \). Shift the selected points horizontally \(c = 1 \) unit right. (Alternatively, add one to each \(x \) value in the table, and \(y \) values stay the same.)

<table>
<thead>
<tr>
<th>(x)</th>
<th>(g_1(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>-7</td>
<td>-2</td>
</tr>
<tr>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
</tr>
</tbody>
</table>

Step 3: Apply the reflection/magnification now. Graph: \(g_2(x) = -3 \cdot 3^{\sqrt[3]{x-1}} = -3 \cdot g_1(x) = -3 \cdot f(x-1) \). Multiply each \(y \)-coordinate of each point from the graph of \(g_1 = f(x-1) \) by \(a = -3 \).
Use translations to graph: \(g(x) = -3 \cdot 3^{\sqrt[3]{x - 1}} + 1 \)

Step 3: Apply the reflection/magnification now. Graph:
\[g_2(x) = -3 \cdot 3^{\sqrt[3]{x - 1}} = -3 \cdot g_1(x) = -3 \cdot f(x - 1). \]
Multiply each y-coordinate of each point from the graph of \(g_1 = f(x - 1) \) by \(a = -3 \).

<table>
<thead>
<tr>
<th>(x)</th>
<th>(g_2(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>-7</td>
<td>6</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>-3</td>
</tr>
<tr>
<td>9</td>
<td>-6</td>
</tr>
</tbody>
</table>

Step 4: graph: \(g(x) = -3 \cdot 3^{\sqrt[3]{x - 1}} + 1 = -3 \cdot f(x - 1) + 1 \). Now shift each point up (vertically) one unit; ie. add one to each y value.
Step 4: graph: \(g(x) = -3 \cdot \sqrt[3]{x - 1} + 1 = -3 \cdot f(x - 1) + 1 \). Now shift each point up (vertically) one unit; ie. add one to each \(y \) value.

\[
\begin{array}{c|c}
 x & g(x) \\
 \hline
 -7 & 7 \\
 0 & 4 \\
 1 & 1 \\
 2 & -2 \\
 9 & -5 \\
\end{array}
\]

\(g(x) = -3 \cdot \sqrt[3]{x - 1} + 1 = -3 \cdot f(x - 1) + 1 \).
Analyze: \(g(x) = -3 \cdot 3 \sqrt[3]{x - 1} + 1 \)

\(g(x) = -3 \cdot 3 \sqrt[3]{x - 1} + 1 = -3 \cdot f(x - 1) + 1 \) has the following characteristics:

- **Domain:** \(x \in (-\infty, \infty) \)
- **Range:** \(y \in (-\infty, \infty) \)
- **\(g(x) \) is a decreasing function.**
 \(g(x) \downarrow \text{ for } x \in (-\infty, \infty) \)
- \(\lim_{x \to \infty} g(x) = -\infty \)
- \(\lim_{x \to -\infty} g(x) = \infty \)