College Algebra - Test 1

1. (6 points) Suppose $g(x)=\left\{\begin{array}{ll}-3 x & \text { if } x<0 \\ \sqrt{16-x^{2}} & \text { if } 0 \leq x<4 \\ (x-4)^{2} & \text { if } x \geq 4\end{array}\right\}$.

Evaluate the piecewise defined function at the values indicated below.
(a) $g(-1)$
(a) \qquad
(b) $\quad g(-3)$
(b) \qquad
(c) $g(0)$
(c) \qquad
(d) $g(4)$
(d) \qquad
(e) $g(6)$
(e) \qquad
(f) $\quad g(8)$
(f) \qquad
2. (4 points) Sketch the graph of the piecewise function defined above.
3. (5 points) Write the domain of $f(x)=\frac{1}{4-x}$ using interval notation.
3. \qquad
4. (5 points) Write the domain of $f(x)=\sqrt{2 x+3}$ using interval notation.
4. \qquad
5. (5 points) Find f / g and its domain. $f(x)=\sqrt{25-x^{2}}$ and $g(x)=\sqrt{2+x}$
5. \qquad
6. (5 points) Find the average rate of change of $f(x)=2 x^{2}-3 x$ from $x_{1}=2$ to $x_{2}=3$
6.
7. (12 points) The graph of a function f is given. Assume the entire graph of f is shown in the figure.
(a) Find all local and absolute maximum and minimum values of the function and the value of x at which each occurs.

(b) State the x intervals for which $f(x)>0$.
(c) State the x intervals for which $f(x)<0$.
(d) Find the x intervals on which the function is increasing.
(e) Find the x intervals on which the function is decreasing.
(f) Find $f(4)$.
(f) \qquad
(g) Find $f(-1)$.
(g) \qquad

Directions: Sketch the graph of the function, not by plotting points, but by starting with the graph of a standard function and applying transformations. Label at least 3 points on your final graph.
8. (5 points) $h(x)=-3 \sqrt{x-4}+1$

Find $f \circ g$ its domain.
9. (5 points) $f(x)=\frac{2}{1-x}$ and $g(x)=2+7 x$.
10. (5 points) Find the inverse function of $f(x)=\frac{2 x}{x+3}$
10.
11. (3 points) Find the vertex of $g(x)=-3(x+4)^{2}-7$. Does f open up or down?
11. \qquad
12. (3 points) What is the range of $g(x)=3(x-5)^{2}+7$?
12.

Express the quadratic function in standard (vertex) form.
13. (5 points) $g(x)=2 x^{2}+4 x-7$
13.

