No Calculators or Computing Devices allowed! Use Algebraic Notation AND Show All of Your Work.

1. (6 points) Find the inverse of $C=\left[\begin{array}{ccc}1 & -2 & -2 \\ 2 & -6 \\ -3 & -6 \\ 6 & 15\end{array}\right]$ if it exists.
2. \qquad
3. (a) (2 points) Write a matrix equation equivalent to the following system.

$$
\left\{\begin{aligned}
3 x+2 y & =14 \\
x-2 y & =2
\end{aligned}\right.
$$

(a) \qquad
(b) (4 points) Find the inverse of the coefficient matrix, and use it to solve the system.
(b)
3. (5 points) Solve $\left\{\begin{array}{l}2 x+y=1 \\ 3 x+4 y=14\end{array}\right\}$ using Cramer's Rule.
3.
4. Let $A=\left[\begin{array}{cc}1 & -5 \\ -3 & 7\end{array}\right], \quad B=\left[\begin{array}{cc}-2 & -6 \\ 2 & 7 \\ 1 & 0\end{array}\right], \quad C=\left[\begin{array}{ccc}1 & 3 & 1 \\ -2 & 7 & 2 \\ 0 & 2 & 4\end{array}\right]$

Carry out the indicated operation, or explain, using complete sentences, why it cannot be performed.
(a) (2 points) $A+B$
(b) (2 points) $A B$
(c) (2 points) $B A-3 A$
(d) (2 points) B^{-1}
(e) (2 points) $\operatorname{det}(B)$
5. (6 points) Find the partial fraction decomposition of $\frac{7 x-2}{x^{2}-4}$.
5.
6. Only one of the following two matrices has an inverse.

$$
A=\left[\begin{array}{ccc}
2 & 3 & -1 \\
0 & 2 & 4 \\
-2 & 5 & 6
\end{array}\right], \quad B=\left[\begin{array}{ccc}
1 & 3 & 7 \\
2 & 0 & 8 \\
0 & 2 & 2
\end{array}\right]
$$

(a) (5 points) Find the determinant of each matrix. (a)
(b) (1 point) Use the determinants from part (a) to identify which matrix has an inverse.
(b)
7. Let $A=\left[\begin{array}{cc}2 & -5 \\ -6 & 2 \\ 2 & -8\end{array}\right], \quad B=\left[\begin{array}{cc}-1 & 3 \\ 3 & -4 \\ 1 & 0\end{array}\right], \quad C=\left[\begin{array}{ccc}3 & 0 & 1 \\ -2 & 4 & 6 \\ 2 & 2 & 5\end{array}\right]$

Carry out the indicated operation, or explain, using complete sentences, why it cannot be performed.
(a) (4 points) $C A$
(b) (4 points) $2 B-3 A$
8. (6 points) Find the complete solution of the system, or show that no solution exists.

$$
\left\{\begin{array}{r}
x-y+5 z=-2 \\
2 x+y+4 z=2 \\
2 x+4 y-2 z=8
\end{array}\right.
$$

8.
9. (6 points) Sketch the graph (and label the vertices, or boundary intersections) of the solution set of ordered pairs of the system.

$$
\left\{\begin{aligned}
x & \geq 0 \\
y & \geq 0 \\
x & \leq 5 \\
x+y & \leq 7
\end{aligned}\right.
$$

10. (6 points) Use Gaussian elimination to find the complete solution of the system, or show that no solution exists.

$$
\left\{\begin{aligned}
x-y+2 z & =0 \\
2 x-4 y+5 z & =-5 \\
2 y-3 z & =5
\end{aligned}\right.
$$

10.
11. (6 points) Write the given system as an augmented matrix. Use Elementary Row Operations to derive equivalent matrices and find the complete solution of the system, or show that no solution exists.

$$
\left\{\begin{array}{r}
x-3 y+2 z=12 \\
2 x-5 y+5 z=14 \\
x-2 y+3 z=20
\end{array}\right.
$$

11.
12. (6 points) Sketch the graph (and label the vertices, or boundary intersections) of the solution set of ordered pairs of the system.

$$
\left\{\begin{array}{r}
x-y<2 \\
x>2 \\
y \leq 3
\end{array}\right.
$$

13. (6 points) Find the partial fraction decomposition of $\frac{3 x-4}{x^{3}+4 x^{2}}$.
14.
15. (6 points) Find the partial fraction decomposition of $\frac{2 x-3}{x^{3}+3 x}$.
16.
