2.1 Solving Linear Equations

Math 55 Professor Busken

Objectives

- Solve equations using the Addition Property of Equality.
- Solve equations using the Multiplication Property of Equality.

Definition 1. A number is a solution of an equation when the variable in the equation can be replaced with the number and the resulting equation is a true statement.

For example, 2 is a solution to $2 \cdot x + 3 = 7$ since $2 \cdot 2 + 3 = 7$.

Definition 2. To solve an equation means to find all of its solutions.

Definition 3. Two equations are called equivalent when they have the same solutions.

The Addition Property of Equality

If a = b, then a + c = b + c.

Adding a number to each side of an equation produces an equivalent equation.

Example Solve: x + 3 = 1

x + 3 = 1	
x + 3 + (-3) = 1 + (-3)	add -3 to both sides
x = -2	solution equation

The Multiplication Property of Equality

If a = b, then $c \cdot a = c \cdot b$.

Multiplying each side of an equation by a nonzero real number c produces an equivalent equation.

Example Solve:
$$-\frac{1}{5}x = 6$$

 $-\frac{1}{5}x = 6$
 $(-5) \cdot \left(-\frac{1}{5}x\right) = (-5) \cdot 6$ multiply both sides by -5
 $1 \cdot x = -30$
 $x = -30$ solution equation

Exercises

- 1. Determine whether the given number is a solution of the given equation.
 - a) Is 0 a solution to x + 3 = 3 + 5x?
 - b) Is 12 a solution to x + 3 = 14?
 - c) Is 3 a solution to 17 = 2 + 5x?

2. Solve using the Addition Property of Equality

a)
$$x + 23 = 17$$
 b) $-3 = 5 + x$ c) $17 = x - 3$ d) $x - 7 = -13$

- 3. Solve using the Multiplication Property of Equality
 - a) $\frac{4}{5}x = 16$ b) $-\frac{2}{3}x = 12$ c) $-7 = \frac{x}{6}$ d) 4x = -24e) $\frac{3x}{5} = 9$ f) 8 = 16x g) -x = 4 h) -7x = 56

Answers: 1a) yes, b) no, c) yes, 2a) -6, b) -8, c) 20, d) -6, 3a) 20, b) -18, c) -42, d) -6, e) 15, f) $\frac{1}{2}$, g) -4, h) -8