Prerequisite
Review 1
Tim Busken

Fundamentals
of Basic Math
Set Definitions
Number Types
Opposites
Absolute Value
Operations
Properties of Real Numbers
Distributive Property Exponential Notation
The Order of
Operations
Properties of Equality
Radicals
Algebraic
Expressions
Polynomials
Poly Add/Subtract
Combining Like
Terms
Muitiplying Poly's
Trinomial times Binomial
Conjugate the Denominator
Factoring
Polynomials
GCF
Factor By Grouping
ac-grouping method
Rational Expressions

Prerequisite Review 1

Professor Tim Busken

Grossmont College
Mathematics Department

June 19, 2013

Table of Contents

of Basic Math
Set Definitions
Number Types
Opposites
Absolute Value
Operations
Properties of Real Numbers
Distributive Property
Exponential Notation
The Order of Operations
Properties of Equality
Radicals
Algebraic Expressions
Polynomials
Poly Add／Subtract
Combining Like Terms
Multiplying Poly＇s
Trinomial times Binomial
Conjugate the Denominator
Factoring Polynomials
GCF
Factor By Grouping
ac－grouping method
Rational Expressions

Mathematical Theorems

Definition
A theorem is a statement that has been proven on the basis of previously established statements.

Basic Set Definitions

Definition
A set is a collection of objects or numbers. We use braces $\}$ to denote a set.

Basic Set Definitions

Definition

A set is a collection of objects or numbers. We use braces $\}$ to denote a set.

Example 1

\{ 1,2,3,4\} denotes a set containing the four numbers 1, 2, 3 and 4 .

Basic Set Definitions

Definition

The union of two sets A and B, written $A \cup B$, is the set of all elements (numbers) that are either in A or in B or both. The \cup symbol means the word "or."

Basic Set Definitions

Definition

The union of two sets A and B, written $A \cup B$, is the set of all elements (numbers) that are either in A or in B or both. The \cup symbol means the word "or."

Example 2 Suppose $A=\{1,2,3\}$ and $B=\{4,5,6\}$.
Then $A \cup B$ is equal to what set?
$A \cup B=$

Basic Set Definitions

Definition

The union of two sets A and B, written $A \cup B$, is the set of all elements (numbers) that are either in A or in B or both. The \cup symbol means the word "or."

Example 2 Suppose $A=\{1,2,3\}$ and $B=\{4,5,6\}$.
Then $A \cup B$ is equal to what set?
$A \cup B=\{1,2,3,4,5,6\}$

Basic Set Definitions

Definition

The intersection of two sets A and B, written $A \cap B$, is the set of all elements (numbers) that are in both A and B. The \cap symbol means the word "and."

Basic Set Definitions

Definition

The intersection of two sets A and B, written $A \cap B$, is the set of all elements (numbers) that are in both A and B. The \cap symbol means the word "and."

Example 3 Suppose $A=\{1,2,3,4\}$ and $B=\{2,4,20\}$.
Then $A \cap B$ is equal to what set?
$A \cap B=$

Basic Set Definitions

Definition

The intersection of two sets A and B, written $A \cap B$, is the set of all elements (numbers) that are in both A and B. The \cap symbol means the word "and."

Example 3 Suppose $A=\{1,2,3,4\}$ and $B=\{2,4,20\}$.
Then $A \cap B$ is equal to what set?
$A \cap B=\{2,4\}$

Number Types

Definition

The natural numbers,

$$
\mathbb{N}=\{1,2,3,4, \ldots\}
$$

consists of the counting numbers, where the ellipsis (...) indicates that the set goes on to infinity, or that there is no upper bound (largest number) in the set.

Number Types

Definition

The set of whole numbers,

$$
\mathbb{W}=\{0,1,2,3,4, \ldots\}
$$

is the set of natural numbers unioned with zero, written $\mathbb{W}=\mathbb{N} \cup\{0\}$.

Number Types

Definition

The set of integers,

$$
\mathbb{Z}=\{\ldots,-4,-3,-2,-1,0,1,2,3,4, \ldots\}
$$

is also known as all the positive and negative whole numbers.

Number Types

Definition

A rational number is any number that can be written as a fraction where both the numerator and denominator are integers (and the denominator is not zero).
The set of rational numbers is written symbolically as

$$
Q=\left\{\left.\frac{a}{b} \right\rvert\, a \text { and } b \text { are any integers, and } b \neq 0\right\}
$$

Note that any integer " a " is a rational number since $a=\frac{a}{T}$.

Number Types

HUGE note: When a rational number (fraction) is represented as a decimal number, then
(1) it has a finite number of digits to the right of the decimal point; for example, $\frac{5}{4}=1.25, \mathrm{OR}$

Number Types

HUGE note: When a rational number (fraction) is represented as a decimal number, then
(1) it has a finite number of digits to the right of the decimal point; for example, $\frac{5}{4}=1.25, \mathrm{OR}$
(2) it has an infinite number of digits to the right of the decimal point AND and those digits have a repeating pattern, for example $\frac{1}{3}=0 . \overline{3}$ and $\frac{2}{37}=0.054054054 \cdots=0 . \overline{054}$.

Number Types

Definition

Real numbers that are not rational, for example, $\sqrt{2}, \sqrt[3]{3}$, and π are called irrational numbers. The set of irrational numbers is denoted II.

Number Types

Definition

Real numbers that are not rational, for example, $\sqrt{2}, \sqrt[3]{3}$, and π are called irrational numbers. The set of irrational numbers is denoted II.

HUGE note: When an irrational number is represented as a decimal number, then
(1) it has an infinite number of digits to the right of the decimal point,

Number Types

Definition

Real numbers that are not rational, for example, $\sqrt{2}, \sqrt[3]{3}$, and π are called irrational numbers. The set of irrational numbers is denoted I.

HUGE note: When an irrational number is represented as a decimal number, then
(1) it has an infinite number of digits to the right of the decimal point,
(2) and those digits do not have a repeating pattern.

Number Types

Definition

The set of real numbers, denoted \mathbb{R}, is the set $\mathbb{R}=\mathbb{Q} \cup \mathbb{I}$, that is the set of rationals unioned with the irrationals. Each real number can be uniquely represented as a decimal, and we associate each real number with a distinct point on a coordinate (number) line.

Prerequisite

Review 1
Tim Busken

Fundamentals

of Basic Math
Set Definitions
Number Types
Opposites
Absolute Value
Operations
Properties of Real Numbers
Distributive Property
Exponential Notation
The Order of
Operations
Properties of
Equality
Radicals
Algebraic
Expressions
Polynomials
Poly Add/Subtract
Combining Like Terms
Muitiplying Poly's
Trinomial times Binomial
Conjugate the Denominator
Factoring
Polynomials
GCF
Factor By Grouping ac-grouping method Rational Expressions

Opposites

Theorem
Every real number has an opposite. The sum of a real number and its opposite is zero. Opposites are often called additive inverses.

Example The opposite of 5 is -5 , and $5+(-5)=0$

Reciprocals

Theorem
Every non-zero real number has a reciprocal. The product of a real number and its reciprocal is one. Reciprocals are often called multiplicative inverses.

Example The multiplicative inverse of 5 is $\frac{1}{5}$, and $5 \cdot \frac{1}{5}=1$

Absolute value

Definition (Absolute Value)

The absolute value of a real number is its distance from 0 on the number line. If $|x|$ represents the absolute value of x, then

$$
|x|=\left\{\begin{aligned}
x, & \text { if } x \geq 0 \\
-x, & \text { if } x<0
\end{aligned}\right.
$$

The absolute value of a real number is never negative.

Example $|5|=5$ and $|-5|=5$.

Prerequisite

Review 1
Tim Busken

Fundamentals
of Basic Math
Set Detinitions
Number Types
Opposites
Absolute Value Operations
Properties of Real Numbers
Distributive Property Exponential Notation
The Order of Operations
Properties of Equality
Radicals
Algebraic
Expressions
Polynomials
Poly Add/Subtract
Combining Like
Terms
Multiplying Poly's
Trinomial times Binomial
Conjugate the Denominator
Factoring
Polynomials
GCF
Factor By Grouping ac-grouping method Rational Expressions

Theorem (Properties of Absolute value)
For any real numbers a and b :
(1) $|a| \geq 0$
(2) $|-a|=|a|$
(3) $|a \cdot b|=|a| \cdot|b|$
(4) $\left|\frac{a}{b}\right|=\frac{|a|}{|b|}$ provided $b \neq 0$

Prerequisite
Review 1
Tim Busken

Addition

To add two real numbers with the same sign:
of Basic Math
Set Definitions
Number Types
Opposites
Absolute Value
Operations
Properties of Real Numbers
Distributive Property Exponential Notation
The Order of Operations
Properties of
Equality
Radicals
Algebraic
Expressions
Polynomials
Poly Add/Subtract
Combining Like Terms
Muitiplying Poly's
Trinomial times Binomial
Conjugate the Denominator
Factoring
Polynomials
GCF
Factor By Grouping
ac-grouping method
Rational Expressions

Prerequisite
Review 1
Tim Busken

Addition

To add two real numbers with the same sign:

- Add the absolute values and use the common sign.

Addition

To add two real numbers with the same sign:

- Add the absolute values and use the common sign.

$$
\begin{aligned}
& \text { Examples } \\
& 7+5=12 \\
& -7+(-5)=-12
\end{aligned}
$$

Prerequisite
Review 1
Tim Busken

To add two real numbers with different signs:

of Basic Math
Set Definitions
Number Types
Opposites
Absolute Value
Operations
Properties of Real Numbers
Distributive Property Exponential Notation
The Order of Operations
Properties of
Equality
Radicals
Algebraic
Expressions
Polynomials
Poly Add/Subtract
Combining Like Terms
Multiplying Poly's
Trinomial times Binomial
Conjugate the Denominator
Factoring
Polynomials
GCF
Factor By Grouping
ac-grouping method
Rational Expressions

Addition

Addition

To add two real numbers with different signs:

- Subtract the smaller absolute value from the larger absolute value. The answer has the same sign as the number with the larger absolute value.

Addition

To add two real numbers with different signs:

- Subtract the smaller absolute value from the larger absolute value. The answer has the same sign as the number with the larger absolute value.

$$
\begin{aligned}
& \text { Examples } \\
& \begin{array}{l}
7+(-5)=2 \\
-7+5=-2
\end{array}
\end{aligned}
$$

Subtraction

We use addition to define subtraction.

Definition

Suppose a and b represent any two real numbers. Then

$$
a-b=a+(-b)
$$

To subtract b, add the opposite of b.

Prerequisite

Review 1
Tim Busken

To multiply two real numbers:

of Basic Math
Set Definitions
Number Types
Opposites
Absolute Value
Operations
Properties of Real Numbers
Distributive Property Exponential Notation
The Order of
Operations
Properties of
Equality
Radicals
Algebraic
Expressions
Polynomials
Poly Add/Subtract
Combining Like Terms
Muitiplying Poly's
Trinomial times Binomial
Conjugate the Denominator
Factoring
Polynomials
GCF
Factor By Grouping
ac-grouping method
Rational Expressions

Multiplication

Review 1
Tim Busken

To multiply two real numbers:

- simply multiply their absolute values.

Multiplication

To multiply two real numbers:

- simply multiply their absolute values.

Like signs give a positive answer. For example, $7 \cdot 5=35$
$(-7) \cdot(-5)=35$

Multiplication

To multiply two real numbers:

- simply multiply their absolute values.

Like signs give a positive answer. For example, $7 \cdot 5=35$
$(-7) \cdot(-5)=35$
Unlike signs give a negative answer. For example,
$-7 \cdot 5=-35$
$7 \cdot(-5)=-35$

Combining Like Terms
Multiplying Poly's
Trinomial times Binomial
Conjugate the Denominator
Factoring Polynomials GCF

Division

We use multiplication to define division.

Definition

Suppose a and b represent any two real numbers, and that $b \neq 0$. Then

$$
\frac{a}{b}=a \cdot \frac{1}{b}
$$

Division

We use multiplication to define division.

Definition

Suppose a and b represent any two real numbers, and that $b \neq 0$. Then

$$
\frac{a}{b}=a \cdot \frac{1}{b}
$$

Example

$$
\frac{3}{4}=3 \cdot \frac{1}{4}
$$

Fundamentals of Basic Math Set Definitions Number Types

Opposites

Absolute Value
Operations
Properties of Real Numbers
Distributive Property Exponential Notation
The Order of
Operations
Properties of Equality
Radicals
Algebraic
Expressions
Polynomials
Poly Add/Subtract
Combining Like Terms
Multiplying Poly's
Trinomial times Binomial
Conjugate the Denominator
Factoring Polynomials GCF

Properties of Real Numbers

Closure

Suppose a and b represent any real numbers, then $a+b$ and $a \cdot b$ are real numbers too.

	For Addition	For Multiplication
Commutative	$a+b=b+a$	$a \cdot b=b \cdot a$
Associative	$a+(b+c)=(a+b)+c$	$a \cdot(b \cdot c)=(a \cdot b) \cdot c$
Identity	$0+a=a$	$1 \cdot a=a$
Inverse	$a+(-a)=0$	$a \cdot\left(\frac{1}{a}\right)=1$
Mult. Prop of Zero	$0 \cdot a=0$	

Prerequisite

Review 1
Tim Busken

Fundamentals of Basic Math Set Definitions Number Types

Opposites
Absolute Value
Operations
Properties of Real Numbers
Distributive Property Exponential Notation
The Order of Operations Properties of Equality Radicals
Algebraic Expressions
Polynomials
Poly Add/Subtract
Combining Like Terms

Muttiplying Poly's
Trinomial times Binomial
Conjugate the Denominator
Factoring
Polynomials
GCF
Factor By Grouping ac-grouping method Rational Expressions

The Distributive Property

Theorem (Distributive Property of Multiplication)
Multiplication distributes over addition. For example,

$$
\overparen{a \cdot(b+c)}=a \cdot b+a \cdot c
$$

Prerequisite
 The Distributive Property

undamentals
of Basic Math
Set Definitions
Number Types
Opposites
Absolute Value
Operations
Properties of Real Numbers

Distributive Property
Exponential Notation
The Order of
Operations
Properties of
Equality
Radicals
Algebraic
Expressions
Polynomials
Poly Add/Subtract
Combining Like
Terms
Muitiplying Poly's
Trinomial times Binomial

Conjugate the Denominator
Factoring
Polynomials
GCF
Factor By Grouping

Prerequisite
Review 1
Tim Busken

Fundamentals of Basic Math
Set Definitions
Number Types
Opposites
Absolute Value
Operations
Properties of Real Numbers
Distributive Property Exponential Notation
The Order of Operations
Properties of Equality
Radicals
Algebraic
Expressions
Polynomials
Poly Add/Subtract
Combining Like
Terms
Muitiplying Poly's
Trinomial times Binomial
Conjugate the Denominator
Factoring
Polynomials
GCF
Factor By Grouping
ac-grouping method
Rational Expressions

The Distributive Property

The distributive property says that multiplication distributes over addition.

The Distributive Property

The distributive property says that multiplication distributes over addition. For example, notice that $3 \cdot(2+5)$ simplifies to the same number as $3 \cdot 2+3 \cdot 5$.

The Distributive Property

The distributive property says that multiplication distributes over addition. For example, notice that $3 \cdot(2+5)$ simplifies to the same number as $3 \cdot 2+3 \cdot 5$.

The Distributive Property

The distributive property says that multiplication distributes over addition. For example, notice that $3 \cdot(2+5)$ simplifies to the same number as $3 \cdot 2+3 \cdot 5$.

and

$$
3 \cdot 2+3 \cdot 5=6+15=21
$$

The Distributive Property

The distributive property says that multiplication distributes over addition. For example, notice that $3 \cdot(2+5)$ simplifies to the same number as $3 \cdot 2+3 \cdot 5$.

and

$$
3 \cdot 2+3 \cdot 5=6+15=21
$$

Therefore,

$$
3(2+5)=3 \cdot 2+3 \cdot 5
$$

Notice in the expression $3 \cdot(2+5)$ that each number inside the parenthesis is multiplied by 3 .

The Distributive Property

Example Use the Distributive Property on the algebraic expression, $3 \cdot(x-1)$. Assume x represents a real number.

The Distributive Property

Example Use the Distributive Property on the algebraic expression, $3 \cdot(x-1)$. Assume x represents a real number.

Solution:

$$
\begin{aligned}
3 \cdot(x-1) & =3 \cdot(x+(-1)) & & \text { Definition of Subtraction } \\
& =3 \cdot x+3 \cdot(-1) & & \text { Distributive Property } \\
& =3 x+(-3) & & \\
& =3 x-3 & & \text { Definition of Subtraction }
\end{aligned}
$$

Prerequisite

Review 1
Tim Busken

Fundamentals
of Basic Math
Set Detinitions
Number Types
Opposites
Absolute Value
Operations
Properties of Real Numbers
Distributive Property
Exponential Notation
The Order of
Operations
Properties of Equality
Radicals

Algebraic

Expressions
Polynomials
Poly Add/Subtract
Combining Like Terms
Multiplying Poly's
Trinomial times Binomial
Conjugate the
Denominator
Factoring
Polynomials
GCF
Factor By Grouping
ac-grouping method
Rational Expressions

Theorem
Suppose a and b are any real numbers. Then

$$
-\frac{a}{b}=\frac{-a}{b} \text { and }-\frac{a}{b}=\frac{a}{-b}
$$

Prerequisite
Review 1
Tim Busken

Fundamentals
of Basic Math
Set Detinitions
Number Types
Opposites
Absolute Value
Operations
Properties of Real Numbers
Distributive Property Exponential Notation
The Order of Operations

Properties of Equality

Radicals
Algebraic
Expressions
Polynomials
Poly Add/Subtract
Combining Like
Terms
Multiplying Poly's
Trinomial times Binomial

Coniugate the Denominator
Factoring
Polynomials
GCF
Factor By Grouping

Exponential Notation

Recall the following terminology related to multiplication.

Exponential Notation

Recall the following terminology related to multiplication.

The numbers we are multiplying are called factors.

Expressions
Polynomials
Poly Add/Subtract
Combining Like Terms
Muitiplying Poly's
Trinomial times Binomial
Conjugate the Denominator
Factoring
Polynomials
GCF
Factor By Grouping ac-grouping method Rational Expressions

Exponential Notation

Recall the following terminology related to multiplication.

The result of multiplying the factors is called the product.

Prerequisite

Review 1
Tim Busken

Fundamentals of Basic Math Set Definitions Number Types

Opposites

Absolute Value
Operations
Properties of Real Numbers
Distributive Property Exponential Notation
The Order of Operations
Properties of Equality
Radicals

Algebraic

Expressions
Polynomials
Poly Add/Subtract
Combining Like
Terms
Multiplying Poly's
Trinomial times Binomial
Conjugate the
Denominator
Factoring
Polynomials
GCF
Factor By Grouping
ac-grouping method
Rational Expressions

Exponential Notation

In the product $2 \cdot 2 \cdot 2 \cdot 2 \cdot 2$, notice that 2 is a factor several times.

Exponential Notation

In the product $2 \cdot 2 \cdot 2 \cdot 2 \cdot 2$, notice that 2 is a factor several times. When this happens, we can use a shorthand notation, called an exponent to write repeated multiplication.

Exponential Notation

In the product $2 \cdot 2 \cdot 2 \cdot 2 \cdot 2$, notice that 2 is a factor several times. When this happens, we can use a shorthand notation, called an exponent to write repeated multiplication. For example,

Exponential Notation

In the product $2 \cdot 2 \cdot 2 \cdot 2 \cdot 2$, notice that 2 is a factor several times. When this happens, we can use a shorthand notation, called an exponent to write repeated multiplication. For example,

Helpful Hint

of Basic Math Set Detinitions Number Types

Opposites

Absolute Value
Operations
Properties of Real Numbers
Distributive Property Exponential Notation
The Order of
Operations
Properties of Equality
Radicals
Algebraic
Expressions
Polynomials
Poly Add/Subtract
Combining Like
Terms
Multiplying Poly's
Trinomial times Binomial
Conjugate the Denominator
Factoring
Polynomials
GCF
Factor By Grouping
ac-grouping method
Rational Expressions

Exponential Expressions

An exponent applies only to its base. For example, $4 \cdot 2^{3}$ means $4 \cdot 2 \cdot 2 \cdot 2$

Exponential Expressions

Helpful Hint

An exponent applies only to its base. For example, $4 \cdot 2^{3}$ means $4 \cdot 2 \cdot 2 \cdot 2$

Helpful Hint

Dont forget that 2^{4}, for example is not $2 \cdot 4$. The expression 2^{4} means repeated multiplication of the same factor.

$$
2^{4}=2 \cdot 2 \cdot 2 \cdot 2=16 \text { whereas } 2 \cdot 4=8
$$

Prerequisite

Review 1
Tim Busken

Fundamentals of Basic Math Set Detinitions Number Types

Opposites

Absolute Value
Operations
Properties of Real Numbers
Distributive Property Exponential Notation
The Order of Operations
Properties of Equality

Radicals

Algebraic

Expressions
Polynomials
Poly Add/Subtract
Combining Like
Terms
Multiplying Poly's
Trinomial times Binomial
Conjugate the
Denominator
Factoring
Polynomials
GCF
Factor By Grouping
ac-grouping method
Rational Expressions

The Order of Operations

Example: Simplify $6+2 \cdot 30$. Do you multiply or add first?

Prerequisite

Review 1
Tim Busken

Fundamentals of Basic Math Set Definitions Number Types Opposites Absolute Value Operations
Properties of Real Numbers
Distributive Property Exponential Notation
The Order of Operations
Properties of Equality
Radicals
Algebraic
Expressions
Polynomials
Poly Add/Subtract
Combining Like Terms
Multipiping Poly's
Trinomial times Binomial
Conjugate the Denominator
Factoring
Polynomials
GCF
Factor By Grouping ac-grouping method Rational Expressions

The Order of Operations

When evaluating a mathematical expression, we will perform the operations in the following order:
(1) Begin with the expression in the innermost parenthesis or brackets and work our way out.

Fundamentals of Basic Math Set Definitions Number Types Opposites Absolute Value Operations
Properties of Real Numbers

The Order of Operations

When evaluating a mathematical expression, we will perform the operations in the following order:
(1) Begin with the expression in the innermost parenthesis or brackets and work our way out.
(2) Change exponential expressions into repeated multiplication.

Fundamentals of Basic Math

The Order of Operations

When evaluating a mathematical expression, we will perform the operations in the following order:
(1) Begin with the expression in the innermost parenthesis or brackets and work our way out.
(2) Change exponential expressions into repeated multiplication.
(3) Multiply or divide in order from left to right.

Fundamentals of Basic Math

The Order of Operations

When evaluating a mathematical expression, we will perform the operations in the following order:
(1) Begin with the expression in the innermost parenthesis or brackets and work our way out.
(2) Change exponential expressions into repeated multiplication.
(3) Multiply or divide in order from left to right.
(4) Add or subtract in order from left to right.

The Order of Operations

When evaluating or simplifying an algebraic or arithmetic expression, we always use the ORDER OF OPERATIONS. In other words we evaluate the expression in the following order:

> P-Parenthesis
> E-Exponents
> M-Multiplication
> D-Division
> A-Addition
> S-Subtraction

The operations,,$+- \times, \div$ must be performed from left to right! The acronym

PEMDAS helps us to recall the ORDER OF OPERATIONS.

Example

Example Recall that for any real number a, it is always true that $-a=(-1) \cdot a$. Use the Order of Operations and $-a=(-1) \cdot a$ to simplify the arithmetic expression $5-10^{2}$.

Example

Example Recall that for any real number a, it is always true that $-a=(-1) \cdot a$. Use the Order of Operations and $-a=(-1) \cdot a$ to simplify the arithmetic expression $5-10^{2}$.

Solution:

$$
\begin{array}{rlrl}
5-10^{2} & =5+\left(-10^{2}\right) & \text { Definition of Subtraction } \\
& =5+\left((-1) \cdot 10^{2}\right) & & \text { Since }-a=(-1) \cdot a \\
& =5+((-1) \cdot 10 \cdot 10) & & \text { Since } 10^{2}=10 \cdot 10 \\
& =5+(-100)=-95 &
\end{array}
$$

Theorem (Properties of Equality)
For any real numbers a and b :

1. $a=a$
2. If $a=b$, then $b=a$
3. If $a=b$ and $b=c$, then $a=c$
4. If $a=b$, then a and b may be
be substituted for one another
in any expression involving a and b

Reflexive property
Symmetric property
Transitive property
Substitution property

Definition

The square of a number is the number times itself.

Fundamentals of Basic Math Set Detinitions Number Types

Opposites

Absolute Value
Operations
Properties of Real Numbers
Distributive Property Exponential Notation
The Order of
Operations
Properties of Equality
Radicals
Algebraic
Expressions
Polynomials
Poly Add/Subtract
Combining Like Terms
Multiplying Poly's
Trinomial times Binomial
Conjugate the Denominator
Factoring
Polynomials
GCF
Factor By Grouping ac-grouping method Rational Expressions

Rational Exponents

Definition

The square of a number is the number times itself.
For instance, the square of 4 is 16 because 4^{2} or $4 \cdot 4=16$. The square of -4 is also 16 because $(-4)^{2}=(-4) \cdot(-4)=16$.

Rational Exponents

Definition

The square of a number is the number times itself.
For instance, the square of 4 is 16 because 4^{2} or $4 \cdot 4=16$. The square of -4 is also 16 because $(-4)^{2}=(-4) \cdot(-4)=16$.

Definition

The reverse process of squaring is finding a square root.

Rational Exponents

Definition

The square of a number is the number times itself.
For instance, the square of 4 is 16 because 4^{2} or $4 \cdot 4=16$. The square of -4 is also 16 because $(-4)^{2}=(-4) \cdot(-4)=16$.

Definition

The reverse process of squaring is finding a square root.
For example, a square root of 16 is 4 because $4^{2}=16$. A square root of 16 is also -4 because $(-4)^{2}=(-4) \cdot(-4)=16$.

Prerequisite
Review 1
Tim Busken

Theorem

Every positive number has two square roots.

Fundamentals
of Basic Math
Set Definitions
Number Types
Opposites
Absolute Value
Operations
Properties of Real Numbers
Distributive Property Exponential Notation
The Order of Operations Properties of Equality
Radicals
Algebraic
Expressions
Polynomials
Poly Add/Subtract
Combining Like Terms
Muitiplying Poly's
Trinomial times Binomial
Conjugate the
Denominator
Factoring
Polynomials
GCF
Factor By Grouping
ac-grouping method
Rational Expressions

Radicals

Algebraic

Expressions
Polynomials
Poly Add/Subtract
Combining Like Terms
Muttiplying Poly's
Trinomial times Binomial
Conjugate the
Denominator
Factoring
Polynomials
GCF
Factor By Grouping
ac-grouping method
Rational Expressions

Theorem Every positive number has two square roots.

For instance, the square roots of 25 are 5 and -5 .

Theorem Every positive number has two square roots.

For instance, the square roots of 25 are 5 and -5 .
Definition
We use the symbol $\sqrt{ }$, called a radical sign, to indicate the positive (or "principal") square root.

Theorem
Every positive number has two square roots.
For instance, the square roots of 25 are 5 and -5 .

Definition

We use the symbol $\sqrt{ }$, called a radical sign, to indicate the positive (or "principal") square root.

For example,

$$
\begin{aligned}
& \sqrt{25}=5 \text { because } 5^{2}=25 \text { and } 5 \text { is positive. } \\
& \sqrt{9}=3 \text { because } 3^{2}=9 \text { and } 3 \text { is positive. }
\end{aligned}
$$

Theorem
Every positive number has two square roots.

For instance, the square roots of 25 are 5 and -5 .
Note: it is a common mistake to assume that an expression like $\sqrt{25}$ indicates both square roots, 5 and -5 . The expression $\sqrt{25}$ indicates only the positive square root of 25 , which is 5 . If we want the negative square root, we must use a negative sign in front of the radical sign.

Theorem
Every positive number has two square roots.

For instance, the square roots of 25 are 5 and -5 .
Note: it is a common mistake to assume that an expression like $\sqrt{25}$ indicates both square roots, 5 and -5 . The expression $\sqrt{25}$ indicates only the positive square root of 25 , which is 5 . If we want the negative square root, we must use a negative sign in front of the radical sign.

We write the negative square root of 25 as $-\sqrt{25}$ (which is -5).

The Order of
Operations
Properties of Equality
Radicals
Algebraic
Expressions
Polynomials
Poly Add/Subtract
Combining Like
Terms
Multiplying Poly's
Trinomial times Binomial
Conjugate the Denominator
Factoring Polynomials GCF
Factor By Grouping ac-grouping method Rational Expressions

Definition (Square Root of a Number)
The square root, $\sqrt{ }$, of a positive number a is the positive number b whose square is a. In symbols,

$$
\sqrt{a}=b \text { if } b^{2}=a
$$

For example,

$$
\sqrt{36}=6 \text { if } 6^{2}=36
$$

Find the square root of each.
$\sqrt{100}$
$\sqrt{64}$
$-\sqrt{81}$
$-\sqrt{121}$

The Order of
Operations
Properties of Equality
Radicals
Algebraic
Expressions
Polynomials
Poly Add/Subtract
Combining Like Terms
Multiplying Poly's
Trinomial times Binomial
Conjugate the Denominator
Factoring Polynomials GCF
Factor By Grouping ac-grouping method Rational Expressions

Definition (Square Root of a Number)
The square root, $\sqrt{ }$, of a positive number a is the positive number b whose square is a. In symbols,

$$
\sqrt{a}=b \text { if } b^{2}=a
$$

For example,

$$
\sqrt{36}=6 \text { if } 6^{2}=36
$$

Find the square root of the following.
$\sqrt{-16}$

The Order of
Operations
Properties of Equality
Radicals
Algebraic
Expressions
Polynomials Poly Add/Subtract
Combining Like Terms
Multiplying Poly's
Trinomial times Binomial
Conjugate the Denominator
Factoring Polynomials GCF

Definition (Square Root of a Number)
The square root, $\sqrt{ }$, of a positive number a is the positive number b whose square is a. In symbols,

$$
\sqrt{a}=b \text { if } b^{2}=a
$$

For example,

$$
\sqrt{36}=6 \text { if } 6^{2}=36
$$

Find the square root of the following.
$\sqrt{-16}$
$\sqrt{-16}$ is not a real number since there is no real number we can raise to the second power and obtain -16.

Definition (Square Root of a Number)
The square root, $\sqrt{ }$, of a positive number a is the positive number b whose square is a. In symbols,

$$
\sqrt{a}=b \text { if } b^{2}=a
$$

For example,

$$
\sqrt{36}=6 \text { if } 6^{2}=36
$$

Find the square root of each.

$$
\begin{aligned}
& \sqrt{\frac{1}{4}} \\
& -\sqrt{\frac{49}{16}} \\
& -\sqrt{\frac{4}{25}}
\end{aligned}
$$

Definition

Numbers like $\frac{1}{4}, \frac{4}{25}, 9$ and 36 are called perfect squares because their square root is a whole number or a fraction.

A square root such as $\sqrt{21}$ cannot be written as a whole number or a fraction since 21 is not a perfect square. It can be approximated by estimating, by using a table, or by using a calculator. We can however, estimate what two whole numbers $\sqrt{21}$ is between.

Finding Functional Values

For each function, find the functional value, $f(10)$.
(1) $f(x)=\sqrt{4 x-5}$
(2) $f(z)=\sqrt{15-z}$

Prerequisite

Review 1
Tim Busken

Fundamentals
of Basic Math
Set Definitions
Number Types
Opposites
Absolute Value
Operations
Properties of Real Numbers

Distributive Property Exponential Notation
The Order of Operations

Properties of Equality

Radicals
Algebraic
Expressions
Polynomials
Poly Add/Subtract
Combining Like
Terms
Multiplying Poly's
Trinomial times Binomial

Conjugate the Denominator
Factoring
Polynomials
GCF
Factor By Grouping ac-grouping method Rational Expressions

Theorem
For any real number a,

$$
\sqrt{a^{2}}=|a|
$$

Simplifying $\sqrt{a^{2}}$

Theorem
For any real number a,

$$
\sqrt{a^{2}}=|a|
$$

Simplify each radical expression as much as possible.
$\sqrt{4 x^{2}}$

$$
\sqrt{(t+4)^{2}}
$$

$\sqrt{x^{2}-4 x+4}$

$$
\sqrt{a^{10}}
$$

The Order of Operations
Properties of Equality
Radicals
Algebraic
Expressions
Polynomials
Poly Add/Subtract
Combining Like
Terms
Muttiplying Poly's
Trinomial times Binomial
Conjugate the Denominator
Factoring
Polynomials
GCF
Factor By Grouping ac-grouping method Rational Expressions

Definition (Cube Root of a Number)
The cube root, $\sqrt[3]{ }$, of a number a is the number b whose cube is a. In symbols,

$$
\sqrt[3]{a}=b \text { if } b^{3}=a
$$

For example,

$$
\sqrt[3]{27}=3 \text { since } 3^{3}=27
$$

Find the cube root of each.
$\sqrt[3]{8}$
$\sqrt[3]{-8}$
$-\sqrt[3]{\frac{1}{8}}$

Definition (Cube Root of a Number)

The cube root, $\sqrt[3]{ }$, of a number a is the number b whose cube is a. In symbols,

$$
\sqrt[3]{a}=b \text { if } b^{3}=a
$$

For example,

$$
\sqrt[3]{27}=3 \text { since } 3^{3}=27
$$

Definition

An expression like $-\sqrt[3]{\frac{1}{8}}$ involving a radical sign is called a radical
expression. In the radical expression $-\sqrt[3]{\frac{1}{8}}$, the number 3 is called the index of the radical, and $\frac{1}{8}$ is called the radicand.

Definition (Cube Root of a Number)

The cube root, $\sqrt[3]{ }$, of a number a is the number b whose cube is a. In symbols,

$$
\sqrt[3]{a}=b \text { if } b^{3}=a
$$

For example,

$$
\sqrt[3]{27}=3 \text { since } 3^{3}=27
$$

Definition (More Fine Print)

The index of a radical must be a positive integer greater than 1. If no index is written, it is assumed to be 2.

Definition (Fourth Root of a Number)
The fourth root, $\sqrt[4]{ }$, of a positive number a is the number b such that

$$
\sqrt[4]{a}=b \text { if } b^{4}=a
$$

For example,

$$
\sqrt[4]{16}=2 \text { since } 2^{4}=16
$$

Find the fourth root of each.
$\sqrt[4]{1}$
$-\sqrt[4]{\frac{1}{16}}$
$\sqrt[4]{-16}$

Definition (Fourth Root of a Number)
The fourth root, $\sqrt[4]{ }$, of a positive number a is the number b such that

$$
\sqrt[4]{a}=b \text { if } b^{4}=a
$$

For example,

$$
\sqrt[4]{16}=2 \text { since } 2^{4}=16
$$

Find the fourth root of each.
$\sqrt[4]{1}$
$-\sqrt[4]{\frac{1}{16}}$
$\sqrt[4]{-16}$
$\sqrt[4]{-16}$ is not a real number since there is no real number we can raise to the fourth power and obtain -16.

Prerequisite

Review 1
Tim Busken

Fundamentals
of Basic Math
Set Definitions
Number Types
Opposites
Absolute Value
Operations
Properties of Real Numbers
Distributive Property Exponential Notation
The Order of Operations
Properties of Equality

Radicals

Algebraic

Expressions
Polynomials
Poly Add/Subtract
Combining Like Terms
Multiplying Poly's
Trinomial times Binomial
Conjugate the Denominator
Factoring
Polynomials
GCF
Factor By Grouping
ac-grouping method
Rational Expressions

There are also fifth roots, sixth roots, seventh roots, and so on. As a generalization, we call $\sqrt[n]{a}$ the $n^{\text {th }}$ root of a.

There are also fifth roots, sixth roots, seventh roots, and so on. As a generalization, we call $\sqrt[n]{a}$ the $n^{\text {th }}$ root of a.

Definition (The $n^{\text {th }}$ Root of a Number)

The $n^{\text {th }}$ root, $\sqrt[n]{a}$, of a positive number a is the number b such that

$$
\sqrt[n]{a}=b \text { if } b^{n}=a
$$

There are also fifth roots, sixth roots, seventh roots, and so on. As a generalization, we call $\sqrt[n]{a}$ the $n^{t h}$ root of a.

Definition (The $n^{\text {th }}$ Root of a Number)

The $n^{\text {th }}$ root, $\sqrt[n]{a}$, of a positive number a is the number b such that

$$
\sqrt[n]{a}=b \text { if } b^{n}=a
$$

We can use the following chart to help summarize the fine print of the definition.

n	a	$\sqrt[n]{a}$	$\sqrt[n]{a^{n}}$
Even	Positive	Positive	a
	Negative	Not a real number	$-a$
Odd	Positive	Positive	a
	Negative	Negative	a

There are also fifth roots, sixth roots, seventh roots, and so on. As a generalization, we call $\sqrt[n]{a}$ the $n^{\text {th }}$ root of a.

Definition (The $n^{\text {th }}$ Root of a Number)

The $n^{\text {th }}$ root, $\sqrt[n]{a}$, of a positive number a is the number b such that

$$
\sqrt[n]{a}=b \text { if } b^{n}=a
$$

We can use the following chart to help summarize the fine print of the definition.

n	a	$\sqrt[n]{a}$	$\sqrt[n]{a^{n}}$
Even	Positive	Positive	a
	Negative	Not a real number	$-a$
Odd	Positive	Positive	a
	Negative	Negative	a

It needs to be clear that we cannot take an even root of a negative number!!!

Definition

A radical function is a function that can be described by a radical expression.

Finding the Domain:

- When the index of the the expression is odd, the domain is the set of real numbers, \mathbb{R}
- When the index of the the expression is even, the domain is the set of values that make the radicand non-negative upon substitution.

Definition

A radical function is a function that can be described by a radical expression.

Finding the Domain:

- When the index of the the expression is odd, the domain is the set of real numbers, \mathbb{R}
- When the index of the the expression is even, the domain is the set of values that make the radicand non-negative upon substitution.

Find the domains for each function.

- $f(x)=\sqrt{x-1}$
- $f(x)=\sqrt[4]{1-2 x}$
- $f(x)=\sqrt[3]{x-1}$

Rational Numbers as Exponents

We have encountered exponential expressions like 2^{3} and $(-2 x)^{5}$ which have integers exponents. But what about expressions like $2^{1 / 2}$ and $(3 x)^{3 / 5}$ which have integers exponents?

Rational Numbers as Exponents

We have encountered exponential expressions like 2^{3} and $(-2 x)^{5}$ which have integers exponents. But what about expressions like $2^{1 / 2}$ and $(3 x)^{3 / 5}$ which have integers exponents?

Definition (The Fractional Exponent Rule)

Suppose d is a positive integer and suppose a is a real number. Then

$$
\sqrt[d]{a}=a^{1 / d}
$$

(but a must not be negative when the index is even).

Rational Numbers as Exponents

We have encountered exponential expressions like 2^{3} and $(-2 x)^{5}$ which have integers exponents. But what about expressions like $2^{1 / 2}$ and $(3 x)^{3 / 5}$ which have integers exponents?

Definition (The Fractional Exponent Rule)

Suppose d is a positive integer and suppose a is a real number. Then

$$
\sqrt[d]{a}=a^{1 / d}
$$

(but a must not be negative when the index is even).

Rational Numbers as Exponents

We have encountered exponential expressions like 2^{3} and $(-2 x)^{5}$ which have integers exponents. But what about expressions like $2^{1 / 2}$ and $(3 x)^{3 / 5}$ which have integers exponents?

Definition (The Fractional Exponent Rule)

Suppose d is a positive integer and suppose a is a real number. Then

$$
\sqrt[d]{a}=a^{1 / d}
$$

(but a must not be negative when the index is even).

For example, we can rewrite $\sqrt{16}=16^{1 / 2}$ and $\sqrt{x}=x^{1 / 2}$.

Rational Numbers as Exponents

The next theorem can be proved using properties of exponents.

Rational Numbers as Exponents

The next theorem can be proved using properties of exponents.
Theorem (The Fractional Exponent Rule)
Suppose n and d are positive integers and suppose a is a real number. Then

$$
\sqrt[d]{a^{n}}=a^{n / d}
$$

(but a must not be negative when the index is even).

Rational Numbers as Exponents

The next theorem can be proved using properties of exponents.

Theorem (The Fractional Exponent Rule)

Suppose n and d are positive integers and suppose a is a real number. Then

$$
\sqrt[d]{a^{n}}=a^{n / d}
$$

(but a must not be negative when the index is even).

The fractional exponent rule can be used as the mnemonic "dan becomes and," or "I can remember the dan and rule," etc.

Rational Numbers as Exponents

The next theorem can be proved using properties of exponents.

Theorem (The Fractional Exponent Rule)

Suppose n and d are positive integers and suppose a is a real number. Then

$$
\sqrt[d]{a^{n}}=a^{n / d}
$$

(but a must not be negative when the index is even).

The fractional exponent rule can be used as the mnemonic "dan becomes and," or "I can remember the dan and rule," etc.

Prerequisite
Review 1
Tim Busken

Fundamentals
of Basic Math
Set Definitions
Number Types

Opposites

Absolute Value
Operations
Properties of Real Numbers
Distributive Property Exponential Notation
The Order of Operations
Properties of Equality
Radicals
Algebraic
Expressions
Polynomials
Poly Add/Subtract
Combining Like
Terms
Muttiplying Poly's
Trinomial times Binomial
Conjugate the Denominator
Factoring
Polynomials
GCF
Factor By Grouping ac-grouping method Rational Expressions

Theorem (The Fractional Exponent Rule)

$$
\sqrt[d]{a^{n}}=a^{n / d}
$$

Write each expression as a radical expression and then simplify the result, if possible.

$$
\begin{aligned}
& (-8)^{1 / 3} \\
& -(144)^{1 / 2} \\
& (-144)^{1 / 2} \\
& \left(-1444^{\frac{1}{2}}\right) \\
& -(81)^{1 / 4} \\
& (x y z)^{1 / 4} \\
& \left(25 x^{16}\right)^{1 / 2}
\end{aligned}
$$

Prerequisite

 Review 1 Tim Busken
Theorem (The Fractional Exponent Rule)

$$
\sqrt[d]{a^{n}}=a^{n / d}
$$

Write an equivalent expression using exponential notation.
$\sqrt[5]{5 a b}$
$\sqrt[2]{2 x}$
$\sqrt[7]{\frac{x^{3} y}{4}}$

Radicals

Algebraic

Expressions
Polynomials
Poly Add/Subtract
Combining Like Terms
Multiplying Poly's
Trinomial times Binomial
Conjugate the Denominator
Factoring
Polynomials
GCF
Factor By Grouping ac-grouping method Rational Expressions

Theorem (Positive Rational Exponent Rule)

$$
a^{n / d} \text { means }(\sqrt[d]{a})^{n}, \text { or } \sqrt[d]{a^{n}}
$$

Simplify as much as possible.
$9^{3 / 2}$
$16^{3 / 4}$
$8^{-2 / 3}$
$\left(\frac{16}{81}\right)^{-3 / 4}$

Theorem (Positive Rational Exponent Rule)

$$
a^{-n / d} \text { means } \frac{1}{a^{n / d}}
$$

Write an equivalent expression with positive exponents and simplify as much as possible.
$(5 x y)^{-4 / 5}$
$4 x^{-2 / 3} y^{1 / 5}$
$\left(\frac{3 x}{7 y}\right)^{-5 / 2}$

Prerequisite

Review 1
Tim Busken

Fundamentals
of Basic Math
Set Definitions
Number Types
Opposites
Absolute Value
Operations
Properties of Real Numbers
Distributive Property Exponential Notation
The Order of
Operations
Properties of Equality

Radicals
Algebraic
Expressions
Polynomials
Poly Add/Subtract
Combining Like
Terms
Muttiplying Poly's
Trinomial times Binomial

Coniugate the
Denominator
Factoring
Polynomials
GCF
Factor By Grouping ac-grouping method Rational Expressions

Use laws of exponents to simplify as much as possible.
$x^{\frac{1}{3}} \cdot x^{\frac{5}{3}}$
$y^{-3 / 8} \cdot y^{5 / 12} \cdot y^{7 / 9}$
$\left(x^{2 / 3}\right)^{3 / 4}$
$\frac{x^{3 / 4}}{x^{2 / 3}}$
$\frac{\left(x^{1 / 3} y^{-3}\right)^{6}}{x^{4} y^{10}}$

The Pythagorean Theorem and Square Roots

Theorem

If a and b are the lengths of the legs of a right triangle and c is the length of the hypotenuse, then
$a^{2}+b^{2}=c^{2}$.

The Pythagorean Equation, $c^{2}=a^{2}+b^{2}$, can be written as $c=\sqrt{a^{2}+b^{2}}$

Prerequisite

Review 1
Tim Busken

Fundamentals
of Basic Math
Set Definitions
Number Types
Opposites
Absolute Value
Operations
Properties of Real Numbers
Distributive Property Exponential Notation
The Order of
Operations
Properties of
Equality
Radicals
Algebraic
Expressions
Polynomials
Poly Add/Subtract
Combining Like Terms
Multiplying Poly's
Trinomial times Binomial
Conjugate the
Denominator
Factoring
Polynomials
GCF
Factor By Grouping
ac-grouping method
Rational Expressions

Product Property for Radicals

$$
\sqrt[n]{a b}=\sqrt[n]{a} \cdot \sqrt[n]{b}
$$

Prerequisite

Review 1
Tim Busken

Fundamentals
of Basic Math
Set Definitions
Number Types
Opposites
Absolute Value
Operations
Properties of Real Numbers
Distributive Property
Exponential Notation
The Order of
Operations
Properties of Equality
Radicals
Algebraic
Expressions
Polynomials
Poly Add/Subtract
Combining Like
Terms
Muttiplying Poly's
Trinomial times Binomial
Conjugate the Denominator
Factoring
Polynomials
GCF
Factor By Grouping
ac-grouping method
Rational Expressions

Product Property for Radicals

$$
\sqrt[n]{a b}=\sqrt[n]{a} \cdot \sqrt[n]{b}
$$

For example,

$$
\begin{aligned}
\sqrt{50} & =\sqrt{25 \cdot 2} \\
& =\sqrt{25} \cdot \sqrt{2} \quad \text { by the product property }
\end{aligned}
$$

Prerequisite

Review 1
Tim Busken

Fundamentals of Basic Math Set Definitions Number Types

Opposites
Absolute Value
Operations
Properties of Real Numbers
Distributive Property
Exponential Notation
The Order of
Operations
Properties of Equality
Radicals
Algebraic
Expressions
Polynomials
Poly Add/Subtract
Combining Like Terms
Muttiplying Poly's
Trinomial times Binomial
Conjugate the Denominator
Factoring
Polynomials
GCF
Factor By Grouping ac-grouping method Rational Expressions

Product Property for Radicals

$$
\sqrt[n]{a b}=\sqrt[n]{a} \cdot \sqrt[n]{b}
$$

For example,

$$
\begin{aligned}
\sqrt{50} & =\sqrt{25 \cdot 2} \\
& =\sqrt{25} \cdot \sqrt{2} \quad \text { by the product property } \\
& =5 \cdot \sqrt{2}
\end{aligned}
$$

Prerequisite

Review 1
Tim Busken

Fundamentals
of Basic Math
Set Definitions
Number Types
Opposites
Absolute Value
Operations
Properties of Real Numbers
Distributive Property
Exponential Notation
The Order of
Operations
Properties of Equality
Radicals
Algebraic
Expressions
Polynomials
Poly Add/Subtract
Combining Like Terms
Muttiplying Poly's
Trinomial times Binomial
Conjugate the Denominator
Factoring
Polynomials
GCF
Factor By Grouping ac-grouping method Rational Expressions

Product Property for Radicals

$$
\sqrt[n]{a b}=\sqrt[n]{a} \cdot \sqrt[n]{b}
$$

For example,

$$
\begin{aligned}
\sqrt{50} & =\sqrt{25 \cdot 2} \\
& =\sqrt{25} \cdot \sqrt{2} \quad \text { by the product property } \\
& =5 \cdot \sqrt{2} \\
& =5 \sqrt{2}
\end{aligned}
$$

Prerequisite

Review 1
Tim Busken

Fundamentals of Basic Math Set Definitions Number Types

Opposites

Absolute Value
Operations
Properties of Real Numbers
Distributive Property
Exponential Notation
The Order of
Operations
Properties of Equality
Radicals
Algebraic
Expressions
Polynomials
Poly Add/Subtract
Combining Like Terms
Muttiplying Poly's
Trinomial times Binomial
Conjugate the Denominator
Factoring
Polynomials
GCF
Factor By Grouping ac-grouping method Rational Expressions

Product Property for Radicals

$$
\sqrt[n]{a b}=\sqrt[n]{a} \cdot \sqrt[n]{b}
$$

For example,

$$
\begin{aligned}
\sqrt{50} & =\sqrt{25 \cdot 2} \\
& =\sqrt{25} \cdot \sqrt{2} \quad \text { by the product property } \\
& =5 \cdot \sqrt{2} \\
& =5 \sqrt{2}
\end{aligned}
$$

There is no sum properties of radicals that says

$$
\sqrt[n]{a+b}=\sqrt[n]{a}+\sqrt[n]{b}
$$

Product Property for Radicals

$$
\sqrt[n]{a b}=\sqrt[n]{a} \cdot \sqrt[n]{b}
$$

For example,

$$
\begin{aligned}
\sqrt{50} & =\sqrt{25 \cdot 2} \\
& =\sqrt{25} \cdot \sqrt{2} \quad \text { by the product property } \\
& =5 \cdot \sqrt{2} \\
& =5 \sqrt{2}
\end{aligned}
$$

There is no sum properties of radicals that says
$\sqrt[n]{a+b}=\sqrt[n]{a}+\sqrt[n]{b}$
If that was true, then
$\sqrt{16}=\sqrt{4+4+4+4}=\sqrt{4}+\sqrt{4}+\sqrt{4}+\sqrt{4}=2+2+2+2=8$

Prerequisite

Review 1
Tim Busken

Fundamentals
of Basic Math
Set Detinitions
Number Types
Opposites
Absolute Value
Operations
Properties of Real Numbers

Distributive Property Exponential Notation
The Order of
Operations
Properties of
Equality
Radicals
Algebraic
Expressions
Polynomials
Poly Add/Subtract
Combining Like
Terms
Multiplying Poly's
Trinomial times Binomial

Conjugate the Denominator
Factoring
Polynomials
GCF
Factor By Grouping
ac-grouping method
Rational Expressions

Quotient Property for Radicals

$$
\sqrt[n]{\frac{a}{b}}=\frac{\sqrt[n]{a}}{\sqrt[n]{b}} \quad(b \neq 0)
$$

Prerequisite

Review 1
Tim Busken

Fundamentals
of Basic Math
Set Definitions
Number Types

Opposites

Absolute Value

Operations

Properties of Real Numbers
Distributive Property
Exponential Notation
The Order of
Operations
Properties of
Equality
Radicals
Algebraic
Expressions
Polynomials
Poly Add/Subtract
Combining Like Terms
Multiplying Poly's
Trinomial times Binomial
Conjugate the Denominator
Factoring
Polynomials
GCF
Factor By Grouping ac-grouping method Rational Expressions

Quotient Property for Radicals

$$
\sqrt[n]{\frac{a}{b}}=\frac{\sqrt[n]{a}}{\sqrt[n]{b}} \quad(b \neq 0)
$$

For example,

$$
\begin{aligned}
\sqrt{\frac{2}{25}} & =\frac{\sqrt{2}}{\sqrt{25}} \\
& =\frac{\sqrt{2}}{5}
\end{aligned}
$$

by the quotient property

When we write radical expressions in simplified form it means we are writing the expressions so that they are easiest to work with.

Simplified Form for Radical Expressions

A radical expression is in simplified form if
(1) None of the factors of the radicand can be written as powers greater than or equal to the index-that is, no perfect squares can be factors of the quantity under a square root sign, no perfect cubes can be factors of what is under a cube root sign, and so forth;
(2) There are no fractions under the radical sign; and
(3) There are no radicals in the denominator.

Simplified Form for Radical Expressions

A radical expression is in simplified form if
(1) None of the factors of the radicand can be written as powers greater than or equal to the index-that is, no perfect squares can be factors of the quantity under a square root sign, no perfect cubes can be factors of what is under a cube root sign, and so forth;
(2) There are no fractions under the radical sign; and
(3) There are no radicals in the denominator.

Try these on your own! Write each radical expression in simplified form. Assume that any variables represent positive quantities.

- $\sqrt{50 x^{2} y^{3}}$
- $\sqrt[3]{32 a^{4} b^{6}}$
- $\sqrt[3]{54 x^{5} y^{8}}$
- $\sqrt{75 m^{5} n^{8}}$
- $\sqrt[4]{80 x^{3} y^{8}}$

Rationalizing the Denominator

Try these on your own! Write each radical expression in simplified form. Assume that any variables represent positive quantities.
$\sqrt{\frac{50}{9 x^{2}}}$
$\sqrt{\frac{5}{6}}$
$\sqrt{\frac{4}{5}}$
$-\sqrt{\frac{5}{2}}$

Rationalizing the Denominator

Try these on your own! Write each radical expression in simplified form. Assume that any variables represent positive quantities.

$$
\frac{2 \sqrt{3 x}}{5 y}
$$

$$
\frac{3 \sqrt{5 x}}{2 y}
$$

$$
\frac{7}{\sqrt[3]{4}}
$$

$$
\frac{5}{\sqrt[3]{9}}
$$

$$
\sqrt{\frac{48 x^{3} y^{4}}{7 z}}
$$

Addition or Subtraction of Radical Expressions

We have been adding and subtracting polynomials by combining like terms. We do the same with radical expressions.

Addition or Subtraction of Radical Expressions

Definition
Two radical terms are said to be similar, or like terms if they have the same index and same radicand.

Addition or Subtraction of Radical Expressions

Definition

Two radical terms are said to be similar, or like terms if they have the same index and same radicand.

Identify whether or not each radical expression contains like terms or not.
$2 \sqrt[3]{5}+\sqrt[3]{5}$
$\sqrt{3}+5 \sqrt{3}-2 \sqrt{3}$
$2 \sqrt[7]{4}+\sqrt[7]{9}$

Adding or Subtracting Radical Expressions

To add or subtract radical expressions, put each in simplified form and apply the distributive property, if possible. We can add only like radicals. We must write each expression in simplified form for radicals before we can tell if the radicals are similar.

Try these on your own! Write each radical expression in simplified form. Then combine like radicals. Assume that any variables represent positive quantities.
$\sqrt{7}-3 \sqrt{7}$
$6 x \sqrt{a}+5 x \sqrt{a}$
$7 \sqrt[6]{7}-\sqrt[6]{7}+4 \sqrt[6]{7}$
$5 x \sqrt{8}+3 \sqrt{32 x^{2}}-5 \sqrt{50 x^{2}}$

Adding or Subtracting Radical Expressions

To add or subtract radical expressions, put each in simplified form and apply the distributive property, if possible. We can add only like radicals. We must write each expression in simplified form for radicals before we can tell if the radicals are similar.

Try these on your own! Write each radical expression in simplified form. Then combine like radicals. Assume that any variables represent positive quantities.
$2 \sqrt[3]{x^{8} y^{6}}-3 y^{2} \sqrt[3]{8 x^{8}}$
$5 a^{2} \sqrt{27 a b^{3}}-6 b \sqrt{12 a^{5} b}$
$b \sqrt[3]{24 a^{5} b}+3 a \sqrt[3]{81 a^{2} b^{4}}$

Prerequisite

Review 1
Tim Busken

Fundamentals of Basic Math

Set Definitions
Number Types

Opposites

Absolute Value
Operations
Properties of Real Numbers
Distributive Property Exponential Notation
The Order of Operations
Properties of Equality Radicals

Algebraic Expressions Polynomials Poly Add/Subtract
Combining Like Terms
Muitiplying Poly's
Trinomial times Binomial
Conjugate the
Denominator
Factoring
Polynomials
GCF
Factor By Grouping ac-grouping method Rational Expressions

- In mathematics, a theorem is a statement that has been proven on the basis of previously established statements, such as other theorems, and previously accepted statements, such as axioms.

Prerequisite

Review 1
Tim Busken

Fundamentals of Basic Math Set Definitions Number Types Opposites Absolute Value Operations
Properties of Real Numbers
Distributive Property Exponential Notation
The Order of Operations
Properties of Equality Radicals
Algebraic Expressions
Polynomials Poly Add/Subtract
Combining Like Terms
Multiplying Poly's
Trinomial times Binomial
Conjugate the Denominator
Factoring
Polynomials
GCF
Factor By Grouping ac-grouping method Rational Expressions

- In mathematics, a theorem is a statement that has been proven on the basis of previously established statements, such as other theorems, and previously accepted statements, such as axioms.
-,,$+- \times, \div$ are called the arithmetic operators.

Prerequisite

Review 1
Tim Busken

Fundamentals of Basic Math Set Detinitions Number Types Opposites Absolute Value Operations
Properties of Real Numbers

- In mathematics, a theorem is a statement that has been proven on the basis of previously established statements, such as other theorems, and previously accepted statements, such as axioms.
-,,$+- \times, \div$ are called the arithmetic operators.
- When a letter represents any number from a set of numbers, it is called a variable.
- In mathematics, a theorem is a statement that has been proven on the basis of previously established statements, such as other theorems, and previously accepted statements, such as axioms.
-,,$+- \times, \div$ are called the arithmetic operators.
- When a letter represents any number from a set of numbers, it is called a variable.
- A constant is either a fixed number, such as 5 , or a letter or symbol that represents a fixed number.

Prerequisite
Review 1
Tim Busken

Fundamentals of Basic Math
Set Definitions
Number Types
Opposites
Absolute Value
Operations
Properties of Real Numbers
Distributive Property Exponential Notation
The Order of Operations
Properties of Equality Radicals
Algebraic Expressions
Polynomials
Poly Add/Subtract
Combining Like
Terms
Multiplying Poly's
Trinomial times Binomial
Conjugate the
Denominator
Factoring
Polynomials
GCF
Factor By Grouping
ac-grouping method
Rational Expressions

- An algebraic expression is any combination of variables, constants, grouping symbols, exponents and arithmetic operators.
- An algebraic expression is any combination of variables, constants, grouping symbols, exponents and arithmetic operators. The terms contained in the given expression are $t, 29,5 a^{2} b$, and $2 x / y$.
- An algebraic expression is any combination of variables, constants, grouping symbols, exponents and arithmetic operators. The terms contained in the given expression are $t, 29,5 a^{2} b$, and $2 x / y$.
- To evaluate an algebraic expression, substitute a numerical value for each variable into the expression and simplify the result by applying the order of operations in a left to right fashion.

Prerequisite

Review 1
Tim Busken

Fundamentals of Basic Math Set Detinitions Number Types

Opposites

Absolute Value
Operations
Properties of Real Numbers
Distributive Property Exponential Notation
The Order of Operations Properties of Equality Radicals Algebraic Expressions
Polynomials
Poly Add/Subtract
Combining Like Terms
Multiplying Poly's
Trinomial times Binomial
Conjugate the Denominator
Factoring
Polynomials
GCF
Factor By Grouping ac-grouping method Rational Expressions

Definition
A term is either a single number or variable, or the product or quotient of several numbers or variables separated from another term by a plus or minus sign in an overall expression.

Definition

A term is either a single number or variable, or the product or quotient of several numbers or variables separated from another term by a plus or minus sign in an overall expression.

For example, the following algebraic expression

$$
100+3 x+5 y z^{2} w^{3}-\frac{2}{3} x
$$

has terms $100,3 x, 5 y z^{2} w^{3}$, and $\frac{2}{3} x$.

Definition

A term is either a single number or variable, or the product or quotient of several numbers or variables separated from another term by a plus or minus sign in an overall expression.

For example, the following algebraic expression

$$
100+3 x+5 y z^{2} w^{3}-\frac{2}{3} x
$$

has terms $100,3 x, 5 y z^{2} w^{3}$, and $\frac{2}{3} x$.

Definition

The numerical factor of a term is a coefficient.

Definition

A term is either a single number or variable, or the product or quotient of several numbers or variables separated from another term by a plus or minus sign in an overall expression.

For example, the following algebraic expression

$$
100+3 x+5 y z^{2} w^{3}-\frac{2}{3} x
$$

has terms $100,3 x, 5 y z^{2} w^{3}$, and $\frac{2}{3} x$.

Definition

The numerical factor of a term is a coefficient.
For example, the aforementioned terms have coefficients $100,3,5$, and $\frac{2}{3}$.

Definition

A term is either a single number or variable, or the product or quotient of several numbers or variables separated from another term by a plus or minus sign in an overall expression.

For example, the following algebraic expression

$$
100+3 x+5 y z^{2} w^{3}-\frac{2}{3} x
$$

has terms $100,3 x, 5 y z^{2} w^{3}$, and $\frac{2}{3} x$.

Definition

The numerical factor of a term is a coefficient.
For example, the aforementioned terms have coefficients $100,3,5$, and $\frac{2}{3}$.
Definition
A constant is a single number, such as 8 or 9 .

Definition

A monomial expression has the form

$$
a x^{n}
$$

where a is a constant that is any real number, x is a variable, and n is a whole number $(0,1,2, \ldots)$.

Definition

A monomial expression has the form

$$
a x^{n},
$$

where a is a constant that is any real number, x is a variable, and n is a whole number ($0,1,2, \ldots$).
For instance, 3. $5 x, 7 x^{4}$, and $9 x^{200}$
are all examples of monomial functions.

Prerequisite

Review 1
Tim Busken

Fundamentals

of Basic Math
Set Definitions
Number Types
Opposites
Absolute Value
Operations
Properties of Real Numbers
Distributive Property
Exponential Notation
The Order of Operations
Properties of
Equality
Radicals
Algebraic
Expressions
Polynomials
Poly Add/Subtract
Combining Like Terms
Multiplying Poly's
Trinomial times Binomial
Conjugate the
Denominator
Factoring
Polynomials
GCF
Factor By Grouping
ac-grouping method
Rational Expressions

Definition

We call n the degree of the monomial.

Definition

We call n the degree of the monomial.

The degree of a nonzero constant is zero. Because $0=0 x=0 x^{2}=0 x^{3}=\ldots$, we cannot assign a degree to the 0 . Therefore, we say 0 has no degree.

Monomial	Coefficient	Degree
3	3	0
$-5 x^{2}$	-5	2
x^{7}	1	7
0	0	no degree

Definition

We call n the degree of the monomial.

The degree of a nonzero constant is zero. Because $0=0 x=0 x^{2}=0 x^{3}=\ldots$, we cannot assign a degree to the 0 . Therefore, we say 0 has no degree.

Monomial	Coefficient	Degree
3	3	0
$-5 x^{2}$	-5	2
x^{7}	1	7
0	0	no degree

四 $p(x)=4 x^{-3}$ is not a monomial because the exponent of the variable, x, is -3 and -3 is not a whole number.

Definition

We call n the degree of the monomial.

The degree of a nonzero constant is zero. Because $0=0 x=0 x^{2}=0 x^{3}=\ldots$, we cannot assign a degree to the 0 . Therefore, we say 0 has no degree.

Monomial	Coefficient	Degree
3	3	0
$-5 x^{2}$	-5	2
x^{7}	1	7
0	0	no degree

四 $p(x)=4 x^{-3}$ is not a monomial because the exponent of the variable, x, is -3 and -3 is not a whole number.

四 $p(x)=2 x^{1 / 3}$ is not a monomial because the exponent of the variable is $1 / 3$, and $1 / 3$ is not a whole number.

A polynomial of degree n is an expression of the form：

$$
a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}
$$

where n is a non－negative integer and $a_{n} \neq 0$ ．
（1）The numbers $a_{n}, a_{n-1}, \ldots, a_{3}, a_{2}, a_{1}, a_{0}$ are the COEFFICIENTS of the polynomial．
（11）a_{0} is called the CONSTANT TERM．
（⿴囗⿰丨丨丁口$a_{n} a^{n}$ is called the LEADING TERM of the polynomial．
（11）a_{n} is called the LEADING COEFFICIENT of the polynomial．
（T） n is called the DEGREE of the polynomial．

Fundamentals
of Basic Math
Set Definitions

Number Types

Opposites

Absolute Value
Operations
Properties of Real Numbers
Distributive Property Exponential Notation
The Order of Operations
Properties of Equality
Radicals
Algebraic
Expressions
Polynomials Poly Add/Subtract
Combining Like
Terms
Multiplying Poly's
Trinomial times Binomial
Conjugate the Denominator
Factoring
Polynomials
GCF
Factor By Grouping ac-grouping method Rational Expressions

Definition

 A polynomial is a monomial or a sum of monomials.| 11 | monomial |
| :--- | :--- |
| $3 x^{4}$ | monomial |
| $2 x^{2}+1$ | binomial |
| $5 x^{3}+x-1$ | trinomial |
| $x^{1 / 2}+5$ | is not a polynomial |
| $\sqrt[5]{x+5}$ | is not a polynomial |
| $\frac{1}{x-1}$ | is not a polynomial |

Definition

The degree of polynomial expression is the degree of the leading term (the term which has x raised to the largest power).

Polynomial Function	Degree	Leading Term	Leading Coefficient	Constant term
$-2 x^{4}-3 x-5$	4	$-2 x^{4}$	-2	-5
$x^{5}-3 x^{6}-10 x-4$	6	$-3 x^{6}$	-3	-4
$5 x^{10}-8 x^{3}-10 x+5$	10	$5 x^{10}$	5	5
$17 x+4$	1	$17 x$	17	4
24	0	24	24	24

Polynomial addition and subtraction is as one would expect.
Example Compute the difference $\left(x^{2}-5 x\right)-\left(3 x^{2}-4 x-1\right)$

$$
\begin{array}{lr}
\left(x^{2}-5 x\right)-\left(3 x^{2}-4 x-1\right)= & \text { since }-a=(-1) \cdot a \\
=\left(x^{2}-5 x\right)-1\left(3 x^{2}-4 x-1\right) & \text { since } a-b=a+(-b) \\
=\left(x^{2}-5 x\right)+(-1)\left(3 x^{2}-4 x-1\right) & \text { distr. prop } \\
=\left(x^{2}-5 x\right)-3 x^{2}+4 x+1 & \text { assoc. prop } \\
=x^{2}-5 x-3 x^{2}+4 x+1 & \text { comm. and assoc. props } \\
=\left(x^{2}-3 x^{2}\right)+(-5 x+4 x)+1 & \text { addn closure prop }
\end{array}
$$

Definition (Like Terms)

Like terms are terms that contain the same variable(s) raised to the same power(s). Like terms can be combined or collected together.

Example Identify the like terms in $4 x^{3}+5 x-7 x^{2}+2 x^{3}+x^{2}$
Solution:

$$
\begin{array}{ll}
\text { like terms: } 4 x^{3} \text { and } 2 x^{3} & \text { same variable and exponent } \\
\text { like terms: }-7 x^{2} \text { and } x^{2} & \text { same variable and exponent }
\end{array}
$$

Example Identify the like terms in $8 x^{2} y^{2}+4 x-6 x^{5}+2 x^{2} y^{2}$
Solution:
like terms: $8 x^{2} y^{2}$ and $2 x^{2} y^{2}$
same variables and exponents

Prerequisite

Review 1
Tim Busken

Multiplying Polynomials

Fundamentals
of Basic Math
Set Detinitions
Number Types
Opposites
Absolute Value
Operations
Properties of Real Numbers

Distributive Property Exponential Notation
The Order of Operations
Properties of Equality

Radicals
Algebraic
Expressions
Polynomials
Poly Add/Subtract
Combining Like
Terms
Multiplying Poly's
Trinomial times Binomial
Conjugate the Denominator
Factoring
Polynomials
GCF
Factor By Grouping
ac-grouping method
Rational Expressions

The product of two binomials results in four terms before the like terms are combined. The acronym "Foil" stands for FIRST, OUTER, INNER, LAST, and should remind you how to compute the product of two binomials. Consider the following product:

$$
(a+b)(c+d)=a(c+d)+b(c+d)=\overbrace{a c}^{F}+\overbrace{a d}^{0}+\overbrace{b c}^{\prime}+\overbrace{b d}^{L}
$$

The product of the two binomials consists of four terms:

- the product of the FIRST term of each (ac),
- the product of the OUTER term of each (ad),
- the product of the INNER term of each (bc), and
- the product of the LAST term of each (bd).

2 Examples:
a.) $(x+4) \cdot(2 x-3)$
b.) $(3 \sqrt{6}-2 \sqrt{5})^{2}$

Example: Multiply $\left(x^{2}-3 x+4\right) \cdot(2 x-3)$

Solution

$$
\begin{aligned}
& \left(x^{2}-3 x+4\right) \cdot(2 x-3)= \\
& =(2 x-3) \cdot\left(x^{2}-3 x+4\right) \\
& =2 x \cdot\left(x^{2}-3 x+4\right)+(-3) \cdot\left(x^{2}-3 x+4\right) \\
& =2 x^{3}-6 x^{2}+8 x-3 x^{2}+9 x-12 \\
& =2 x^{3}+\left(-6 x^{2}-3 x^{2}\right)+(8 x+9 x)-12 \\
& =2 x^{3}-9 x^{2}+17 x-12
\end{aligned}
$$

comm prop \times distr. prop \times distr. prop \times comm., assoc. + addn closure prop

Example: Simplify $\frac{3}{5-\sqrt{2}}$ so that no radicals are in the denominator.
Solution

$$
\begin{aligned}
& \frac{3}{5-\sqrt{2}}=\frac{3}{5-\sqrt{2}} \cdot(1) \\
& =\frac{3}{5-\sqrt{2}} \cdot \frac{5+\sqrt{2}}{5+\sqrt{2}} \\
& =\frac{3(5+\sqrt{2})}{5^{2}-(\sqrt{2})^{2}} \\
& =\frac{15+3 \sqrt{2}}{25-2} \\
& =\frac{15+3 \sqrt{2}}{23} \\
& =\frac{15}{23}+\frac{3 \sqrt{2}}{23} \\
& \text { since } \frac{5+\sqrt{2}}{5+\sqrt{2}}=1 \\
& \text { since }(a-b) \cdot(a+b)=a^{2}-b^{2} \\
& \text { Distr. prop \& } \sqrt[n]{a^{n}}=a \\
& \text { closure }
\end{aligned}
$$

\#1 RULE: FACTOR OUT THE

GCF

Factoring reverses multiplication. Consider the polynomial expression $6 x^{2}-3 x$, whose two terms have a greatest common factor, $3 x$.

$$
\begin{array}{rlr}
6 x^{2}-3 x & =(3 x) \cdot(2 x)-(3 x) \cdot(1) \\
& =3 x \cdot(2 x-1) \quad \text { since } a \cdot b-a \cdot c=a \cdot(b-c)
\end{array}
$$

We can rewrite $6 x^{2}-3 x$ as a difference of two products. Afterwards, we can rewrite an equivalent expression using the distributive property. We call this process factoring out the gef.

Definition (The \#1 Rule of Factoring)

The first step to factoring any algebraic expression is to factor out the gcf (if there is one).

Definition

The greatest common factor (GCF) for a polynomial is the largest monomial that divides (is a factor of) each term of the polynomial.
Example: The greatest common factor for $25 x^{5}+20 x^{4}-30 x^{3}$ is $5 x^{3}$ since it is the largest monomial that is a factor of each term.

$$
\begin{align*}
25 x^{5}+20 x^{4}-30 x^{3} & =5 x^{3} \cdot\left(5 x^{2}\right)+5 x^{3} \cdot(4 x)-5 x^{3} . \tag{6}\\
& =5 x^{3} \cdot\left(5 x^{2}+4 x-6\right)
\end{align*}
$$

Prerequisite

Review 1
Tim Busken

Opposites

Absolute Value
Operations
Properties of Real Numbers
Distributive Property Exponential Notation
The Order of Operations
Properties of Equality
Radicals

Algebraic

Expressions
Polynomials
Poly Add/Subtract
Combining Like
Terms
Multiplying Poly's
Trinomial times Binomial
Conjugate the Denominator
Factoring
Polynomials
GCF
Factor By Grouping
ac-grouping method
Rational Expressions

How to find the GCF of a polynomial
(1) Find the GCF of the coefficients of each variable factor.

How to find the GCF of a polynomial

(1) Find the GCF of the coefficients of each variable factor.
(2) For each variable factor common to all the terms, determine the smallest exponent that the variable factor is raised to.

How to find the GCF of a polynomial

(1) Find the GCF of the coefficients of each variable factor.
(2) For each variable factor common to all the terms, determine the smallest exponent that the variable factor is raised to.
(3) Compute the product of the common factors found in Steps 1 and 2. This expression is the GCF of the polynomial.

How to find the GCF of a polynomial

(1) Find the GCF of the coefficients of each variable factor.
(2) For each variable factor common to all the terms, determine the smallest exponent that the variable factor is raised to.
(3) Compute the product of the common factors found in Steps 1 and 2. This expression is the GCF of the polynomial.

Factor the greatest common factor from each of the following.

- $8 x^{3}-8 x^{2}-48 x$
- $15 a^{7}-25 a^{5}+30 a^{3}$
- $12 x^{4} y^{5}-9 x^{3} y^{4}-15 x^{5} y^{3}$
- $4(a+b)^{4}+6(a+b)^{3}+16(a+b)^{2}$
- $x(x+7)+2(x+7)$

Factoring Trinomials with a Leading Coefficient of 1

Earlier in the chapter, we multiplied binomials.

$$
\begin{gathered}
(x+2) \cdot(x+8)=x^{2}+10 x+16 \\
(x+6)(x+3)=x^{2}+9 x+18
\end{gathered}
$$

In each case, the product of the two binomials is a trinomial.

Factoring Trinomials with a Leading Coefficient of 1

Earlier in the chapter, we multiplied binomials.

$$
\begin{gathered}
(x+2) \cdot(x+8)=x^{2}+10 x+16 \\
(x+6)(x+3)=x^{2}+9 x+18
\end{gathered}
$$

In each case, the product of the two binomials is a trinomial. The first term in the resulting trinomial is obtained by multiplying the first term in each binomial.

Factoring Trinomials with a Leading Coefficient of 1

Earlier in the chapter, we multiplied binomials.

$$
\begin{gathered}
(x+2) \cdot(x+8)=x^{2}+10 x+16 \\
(x+6)(x+3)=x^{2}+9 x+18
\end{gathered}
$$

In each case, the product of the two binomials is a trinomial. The first term in the resulting trinomial is obtained by multiplying the first term in each binomial. The middle term arises from adding the product of the two inside terms with the product of the two outside terms.

Factoring Trinomials with a Leading Coefficient of 1

Earlier in the chapter, we multiplied binomials.

$$
\begin{gathered}
(x+2) \cdot(x+8)=x^{2}+10 x+16 \\
(x+6)(x+3)=x^{2}+9 x+18
\end{gathered}
$$

In each case, the product of the two binomials is a trinomial. The first term in the resulting trinomial is obtained by multiplying the first term in each binomial. The middle term arises from adding the product of the two inside terms with the product of the two outside terms. The last term is the product of the two outside terms. The last term is the product of the last terms in each binomial.

Prerequisite

Review 1
Tim Busken

Fundamentals of Basic Math Set Detinitions Number Types Opposites
Absolute Value
Operations
Properties of Real Numbers
Distributive Property Exponential Notation
The Order of
Operations
Properties of Equality
Radicals
Algebraic
Expressions
Polynomials
Poly Add/Subtract
Combining Like Terms
Multiplying Poly's
Trinomial times Binomial
Conjugate the Denominator
Factoring Polynomials GCF
Factor By Grouping ac-grouping method Rational Expressions

Factoring Trinomials with a Leading Coefficient of 1

In general,

$$
(x+a) \cdot(x+b)=x^{2}+a x+b x+a \cdot b
$$

Prerequisite

Review 1
Tim Busken

Fundamentals of Basic Math Set Definitions Number Types
Opposites
Absolute Value
Operations
Properties of Real Numbers
Distributive Property Exponential Notation
The Order of
Operations
Properties of Equality
Radicals

Algebraic

Expressions
Polynomials
Poly Add/Subtract
Combining Like Terms
Multiplying Poly's
Trinomial times Binomial
Conjugate the Denominator
Factoring Polynomials GCF
Factor By Grouping ac-grouping method Rational Expressions

Factoring Trinomials with a Leading Coefficient of 1

In general,

$$
\begin{aligned}
(x+a) \cdot(x+b) & =x^{2}+a x+b x+a \cdot b \\
& =x^{2}+(a+b) x+a \cdot b
\end{aligned}
$$

Factoring Trinomials with a Leading Coefficient of 1

In general,

$$
\begin{aligned}
(x+a) \cdot(x+b) & =x^{2}+a x+b x+a \cdot b \\
& =x^{2}+(a+b) x+a \cdot b
\end{aligned}
$$

We can view this generalization as a factoring problem

$$
x^{2}+(a+b) x+a \cdot b=(x+a) \cdot(x+b)
$$

Factoring Trinomials with a Leading Coefficient of 1

In general,

$$
\begin{aligned}
(x+a) \cdot(x+b) & =x^{2}+a x+b x+a \cdot b \\
& =x^{2}+(a+b) x+a \cdot b
\end{aligned}
$$

We can view this generalization as a factoring problem

$$
x^{2}+(a+b) x+a \cdot b=(x+a) \cdot(x+b)
$$

To factor a trinomial with a leading coefficient of 1, we simply find the two numbers a and b whose sum is the coefficient of the middle term, and whose product is the constant term.

Factoring Trinomials with a Leading Coefficient of 1

Factor.

- $x^{2}+5 x+4$
- $x^{2}+7 x+6$
- $x^{2}+9 x+14$
- $x^{2}+11 x+24$
- $x^{2}+19 x+34$
- $x^{2}+12 x+27$
- $x^{2}+20 x+64$
- $x^{2}+18 x+65$
- $x^{2}-x+5$
- $x^{2}+5 x y+4 y^{2}$
- $x^{2}+5 x y+6 y^{2}$
- $x^{2}+12 x y+27 y^{2}$
- $m^{2}+19 m n+60 n^{2}$
- $x^{2}+2 x-15$
- $x^{2}-7 x-18$
- $x^{2}+x-20$
- $x^{2}+10 x-24$

Polynomials with four terms can sometimes be factored by grouping.

Example Factor $x^{4}-2 x^{3}-8 x+16$

Solution:

$$
\begin{aligned}
& \begin{aligned}
x^{4}-2 x^{3}-8 x+16 & =\left(x^{4}-2 x^{3}\right)+(-8 x+16) \\
& =\left[x \cdot\left(x^{3}\right)+(-2) \cdot\left(x^{3}\right)\right]+[(-8) \cdot x+(-8) \cdot(-2)] \\
& =x^{3}(x-2)-8(x-2) \quad \text { (distr. prop.) } \\
& =x^{3}(x-2)-8(x-2) \quad \text { (identify common factor) } \\
& =(x-2)\left(x^{3}-8\right) \quad \text { (distr. prop) }
\end{aligned} \\
& \begin{array}{l}
\text { **Technically we are not done. This is not the prime factorization of the given } \\
\text { polynomial since } x^{3}-8 \text { can be factored with the difference of cubes formula. }
\end{array}
\end{aligned}
$$

Prerequisite
Review 1
Tim Busken

Fundamentals of Basic Math Set Definitions Number Types

Opposites

Absolute Value
Operations
Properties of Real Numbers
Distributive Property
Exponential Notation
The Order of
Operations
Properties of
Equality
Radicals
Algebraic
Expressions
Polynomials
Poly Add/Subtract
Combining Like Terms
Muitiplying Poly's
Trinomial times Binomial
Conjugate the Denominator
Factoring
Polynomials
GCF
Factor By Grouping ac-grouping method Rational Expressions

Problem: Factor $a x^{2}+b x+c$
Problem: Factor $10 x^{2}-11 x-6$
(1) Multiply a times c.
(2) List all possible pairs of numbers whose product is ac

(3) Box the pair whose sum is $b \nearrow |$| (3) $b=-11$, and $-15+4=-11$ |
| :--- | :--- |

Problem: Factor $a x^{2}+b x+c \mid \underline{\text { Problem: Factor } 10 x^{2}-11 x-6}$
(4) Replace b with the sum of the circled pair. Distribute x into this quantity
(5) Now factor by grouping: Use parenthesis to group the first two terms, and another () to group the second two terms.
(4) $10 x^{2}-11 x-6$

$$
=10 x^{2}+(-15 x+4 x)-6
$$

$$
=10 x^{2}-15 x+4 x-6
$$

(5) $\left(10 x^{2}-15 x\right)+(4 x-6)$

$$
=5 x(2 x-3)+2(2 x-3)
$$

$$
=5 x(2 x-3)+2(2 x-3)
$$

$$
=(2 x-3) \cdot(5 x+2)
$$

Recall: The Number Types

Definition
The set of whole numbers,

$$
\mathbb{W}=\{0,1,2,3,4, \ldots\}
$$

is the set of natural numbers unioned with zero, written $\mathbb{W}=\mathbb{N} \cup\{0\}$.

Recall: The Number Types

Definition
The set of integers,

$$
\mathbb{Z}=\{\ldots,-4,-3,-2,-1,0,1,2,3,4, \ldots\}
$$

is also known as all the positive and negative whole numbers.

Recall: The Number Types

Definition

A rational number is any number that can be expressed as the ratio of two integers. The set of rational numbers is written symbolically as

$$
\mathbb{Q}=\left\{\left.\frac{a}{b} \right\rvert\, a \text { and } b \text { are any integers, and } b \neq 0\right\}
$$

Note that any integer " a " is a rational number since $a=\frac{a}{T}$.

Rational expressions

A rational expression is defined similarly as any expression that can be written as the ratio of two polynomials.
Definition (Rational Expressions)

$$
\text { rational expressions }=\left\{\left.\frac{p}{q} \right\rvert\, p \text { and } q \text { are polynomials, } q \neq 0\right\}
$$

Rational expressions

A rational expression is defined similarly as any expression that can be written as the ratio of two polynomials.

Definition (Rational Expressions)

$$
\text { rational expressions }=\left\{\left.\frac{p}{q} \right\rvert\, p \text { and } q \text { are polynomials, } q \neq 0\right\}
$$

Some examples of rational expressions are

$$
\frac{1}{x}, \quad \frac{2 m-3}{6 n-7}, \quad \frac{x^{2}-3 x-1}{x^{2}-3 x-5}, \quad \frac{x-y}{y-x}
$$

Rational expressions

Basic Properties

Multiplying (or dividing) the numerator and denominator by the same nonzero expression may change the form of the rational expression, but it will always produce an expression equivalent to the original one.

Rational expressions

Basic Properties

Multiplying (or dividing) the numerator and denominator by the same nonzero expression may change the form of the rational expression, but it will always produce an expression equivalent to the original one.
We use this property to reduce fractions to lowest terms. For example,

$$
\frac{6}{8}=\frac{3 \cdot \not 2}{4 \cdot 2}=\frac{3}{4}
$$

Prerequisite

Review 1
Tim Busken

Fundamentals of Basic Math Set Definitions Number Types Opposites Absolute Value Operations
Properties of Real Numbers
Distributive Property Exponential Notation
The Order of Operations Properties of Equality Radicals Algebraic Expressions
Polynomials Poly Add/Subtract
Combining Like Terms
Muttiplying Poly's
Trinomial times Binomial
Conjugate the Denominator
Factoring
Polynomials
GCF
Factor By Grouping ac-grouping method Rational Expressions

Using Basic Properties

In a similar fashion, we reduce rational expressions to lowest terms by
(1) first factoring the numerator and denominator,
(2) and then dividing both numerator and denominator by any factors they have in common.

Prerequisite

Review 1
Tim Busken

Fundamentals of Basic Math Set Definitions Number Types Opposites Absolute Value Operations
Properties of Real Numbers
Distributive Property Exponential Notation
The Order of Operations Properties of Equality Radicals
Algebraic Expressions Polynomials Poly Add/Subtract
Combining Like Terms
Muttiplying Poly's
Trinomial times Binomial
Conjugate the Denominator
Factoring Polynomials GCF
Factor By Grouping ac-grouping method Rational Expressions

Using Basic Properties

In a similar fashion, we reduce rational expressions to lowest terms by
(1) first factoring the numerator and denominator,
(2) and then dividing both numerator and denominator by any factors they have in common.

Example: Reduce $\frac{x^{2}-25}{x-5}$ to lowest terms.

Prerequisite

Review 1
Tim Busken

Fundamentals of Basic Math Set Detinitions Number Types Opposites Absolute Value Operations
Properties of Real Numbers
Distributive Property Exponential Notation
The Order of Operations
Properties of

Equality

Radicals
Algebraic
Expressions
Polynomials Poly Add/Subtract Combining Like Terms
Multiplying Poly's
Trinomial times Binomial
Conjugate the Denominator
Factoring Polynomials GCF

Using Basic Properties

In a similar fashion, we reduce rational expressions to lowest terms by
(1) first factoring the numerator and denominator,
(2) and then dividing both numerator and denominator by any factors they have in common.

Example: Reduce $\frac{x^{2}-25}{x-5}$ to lowest terms.
Solution:
$\frac{x^{2}-25}{x-5}=\frac{(x-5) \cdot(x+5)}{x-5}=\frac{(x-5) \cdot(x+5)}{(x-5)}=x+5$

Using Basic Properties

We reduce rational expressions to lowest terms by
(1) first factoring the numerator and denominator,
(2) and then dividing both numerator and denominator by any factors they have in common.

Try This One! Reduce $\frac{x-5}{x^{2}-10 x+25}$ to lowest terms.

Using Basic Properties

We reduce rational expressions to lowest terms by
(1) first factoring the numerator and denominator,
(2) and then dividing both numerator and denominator by any factors they have in common.

Try This One! Reduce $\frac{x-5}{x^{2}-10 x+25}$ to lowest terms.

Solution:

$$
\frac{x-5}{x^{2}-10 x+25}=\frac{x-5}{(x-5)^{2}}=\frac{1 \cdot(x-5)}{(x-5) \cdot(x-5)}=\frac{1 \cdot(x-5)}{(x-5)(x-5)}=\frac{1}{x-5}
$$

Using Basic Properties

We reduce rational expressions to lowest terms by
(1) first factoring the numerator and denominator,
(2) and then dividing both numerator and denominator by any factors they have in common.

Try This One! Reduce $\frac{-3+5 x}{25 x^{2}-9}$ to lowest terms.

Using Basic Properties

We reduce rational expressions to lowest terms by
(1) first factoring the numerator and denominator,
(2) and then dividing both numerator and denominator by any factors they have in common.

Try This One! Reduce $\frac{-3+5 x}{25 x^{2}-9}$ to lowest terms.
Solution:

$$
\frac{-3+5 x}{25 x^{2}-9}=\frac{5 x-3}{(5 x)^{2}-3^{2}}=\frac{1 \cdot(5 x-3)}{(5 x+3) \cdot(5 x-3)}=\frac{1 \cdot(5 x-3)}{(5 x+3)(5 x-3)}=\frac{1}{5 x+3}
$$

Prerequisite

Review 1
Tim Busken

Fundamentals of Basic Math Set Definitions Number Types Opposites Absolute Value Operations
Properties of Real Numbers
Distributive Property Exponential Notation
The Order of Operations Properties of Equality Radicals

Algebraic
Expressions
Polynomials
Poly Add/Subtract
Combining Like Terms

Muttiplying Poly's
Trinomial times Binomial

Coniugate the Denominator
Factoring Polynomials GCF
Factor By Grouping ac-grouping method Rational Expressions

Try This One! Reduce $\frac{5 x-3}{3-2 x}$ to lowest terms.

Try This One! Reduce $\frac{5 x-3}{3-2 x}$ to lowest terms.

Solution:

First degree polynomials have form $a x+b$ for real numbers a and b with a not equal to zero. First degree polynomials are always prime, unless the numbers a and b have a greatest common factor. So, the given expression is prime (not factorable), since both first degree polynomials do not have a common constant that can be divided out of both numerator and denominator. Therefore, the given rational expression is in lowest terms.

Prerequisite

Review 1
Tim Busken

Fundamentals of Basic Math Set Definitions Number Types Opposites Absolute Value Operations
Properties of Real Numbers
Distributive Property Exponential Notation
The Order of Operations
Properties of Equality
Radicals
Algebraic
Expressions
Polynomials
Poly Add/Subtract
Combining Like
Terms
Muitiplying Poly's
Trinomial times Binomial
Conjugate the Denominator
Factoring
Polynomials
GCF
Factor By Grouping ac-grouping method Rational Expressions

Try This One! Reduce $\frac{16 y^{3}-250}{12 y^{2}-26 y-10}$ to lowest terms.

Prerequisite

Review 1
Tim Busken

Fundamentals of Basic Math Set Definitions Number Types

Opposites

Absolute Value
Operations
Properties of Real Numbers
Distributive Property Exponential Notation
The Order of
Operations
Properties of Equality
Radicals
Algebraic
Expressions
Polynomials
Poly Add/Subtract
Combining Like Terms
Muitiplying Poly's
Trinomial times Binomial
Conjugate the
Denominator
Factoring
Polynomials
GCF
Factor By Grouping ac-grouping method Rational Expressions

Try This One! Reduce $\frac{16 y^{3}-250}{12 y^{2}-26 y-10}$ to lowest terms.
Solution: $\frac{16 y^{3}-250}{12 y^{2}-26 y-10}=\frac{2 \cdot\left(8 y^{3}-125\right)}{2 \cdot\left(6 y^{2}-13 y-5\right)}=\frac{(2 y)^{3}-5^{3}}{6 y^{2}+2 y-15 y-5}$

Prerequisite
Review 1
Tim Busken

Fundamentals of Basic Math Set Definitions Number Types

Opposites

Absolute Value
Operations
Properties of Real Numbers
Distributive Property Exponential Notation
The Order of
Operations
Properties of Equality Radicals

Algebraic

Expressions
Polynomials
Poly Add/Subtract
Combining Like Terms Muitiplying Poly's Trinomial times Binomial

Conjugate the

 DenominatorFactoring
Polynomials GCF

Try This One! Reduce $\frac{16 y^{3}-250}{12 y^{2}-26 y-10}$ to lowest terms.

$$
\begin{aligned}
& \text { Solution: } \frac{16 y^{3}-250}{12 y^{2}-26 y-10}=\frac{2 \cdot\left(8 y^{3}-125\right)}{2 \cdot\left(6 y^{2}-13 y-5\right)}=\frac{(2 y)^{3}-5^{3}}{6 y^{2}+2 y-15 y-5} \\
& =\frac{(2 y-5)\left(4 y^{2}+10 y+25\right)}{\left(6 y^{2}+2 y\right)+(-15 y-5)}=\frac{(2 y-5)\left(4 y^{2}+10 y+25\right)}{2 y \cdot(3 y+2)+(-5) \cdot(3 y+2)}=\frac{(2 y-5)\left(4 y^{2}+10 y+25\right)}{(3 y+2) \cdot(2 y-5)} \\
& =\frac{\left(4 y^{2}+10 y+25\right)}{(3 y+2)}
\end{aligned}
$$

Prerequisite

Review 1
Tim Busken

Fundamentals of Basic Math Set Definitions Number Types Opposites Absolute Value Operations
Properties of Real Numbers
Distributive Property Exponential Notation
The Order of Operations

Properties of Equality

Radicals
Algebraic
Expressions
Polynomials
Poly Add/Subtract
Combining Like Terms

Muttiplying Poly's
Trinomial times Binomial

Coniugate the Denominator
Factoring Polynomials GCF
Factor By Grouping ac-grouping method Rational Expressions

$$
\text { Try This One! Reduce } \frac{3 a^{3}+3}{6 a^{2}-6 a+6} \text { to lowest terms. }
$$

Try This One! Reduce $\frac{3 a^{3}+3}{6 a^{2}-6 a+6}$ to lowest terms.

Solution: $\frac{3 a^{3}+3}{6 a^{2}-6 a+6}=\frac{3\left(a^{3}+1\right)}{6\left(a^{2}-a+1\right)}=\frac{3(a+1)\left(a^{2}-a+1\right)}{6\left(a^{2}-a+1\right)}$

$$
=\frac{3(a+1)}{6}=\frac{3(a+1)}{3 \cdot 2}=\frac{\not 3(a+1)}{\not \supset \cdot 2}=\frac{(a+1)}{2}
$$

Prerequisite

Review 1
Tim Busken

Fundamentals
of Basic Math
Set Definitions
Number Types
Opposites
Absolute Value
Operations
Properties of Real Numbers
Distributive Property Exponential Notation
The Order of
Operations
Properties of Equality
Radicals
Algebraic
Expressions
Polynomials
Poly Add/Subtract
Combining Like
Terms
Multiplying Poly's
Trinomial times Binomial
Conjugate the
Denominator
Factoring
Polynomials
GCF
Factor By Grouping ac-grouping method Rational Expressions

$$
\text { Try This One! Reduce } \frac{x^{2}-3 x+a x-3 a}{x^{2}-a x-3 x+3 a} \text { to lowest terms. }
$$

Prerequisite
Review 1
Tim Busken

Fundamentals of Basic Math Set Definitions Number Types

Opposites

Absolute Value
Operations
Properties of Real Numbers
Distributive Property Exponential Notation
The Order of
Operations
Properties of Equality
Radicals
Algebraic
Expressions
Polynomials
Poly Add/Subtract
Combining Like Terms
Multiplying Poly's
Trinomial times Binomial
Conjugate the Denominator
Factoring Polynomials GCF

Try This One! Reduce $\frac{x^{2}-3 x+a x-3 a}{x^{2}-a x-3 x+3 a}$ to lowest terms.

Solution:

$$
\begin{aligned}
& \frac{x^{2}-3 x+a x-3 a}{x^{2}-a x-3 x+3 a}=\frac{\left(x^{2}-3 x\right)+(a x-3 a)}{\left(x^{2}-a x\right)+(-3 x+3 a)}=\frac{x(x-3)+a(x-3)}{x(x-a)+(-3)(x-a)} \\
& =\frac{(x+a)(x-3)}{(x-a)(x-3)}=\frac{(x+a)(x-3)}{(x-a)(x-3)}=\frac{(x+a)}{(x-a)}
\end{aligned}
$$

Prerequisite

Review 1
Tim Busken

Fundamentals
of Basic Math
Set Detinitions
Number Types
Opposites
Absolute Value
Operations
Properties of Real Numbers
Distributive Property Exponential Notation
The Order of Operations
Properties of
Equality
Radicals
Algebraic
Expressions
Polynomials
Poly Add/Subtract
Combining Like
Terms
Muitiplying Poly's
Trinomial times Binomial
Conjugate the
Denominator
Factoring
Polynomials
GCF
Factor By Grouping ac-grouping method Rational Expressions

$$
\text { Try This One! Reduce } \frac{a-b}{b-a} \text { to lowest terms. }
$$

Prerequisite

Review 1
Tim Busken

Fundamentals
of Basic Math
Set Detinitions
Number Types
Opposites
Absolute Value
Operations
Properties of Real Numbers
Distributive Property Exponential Notation
The Order of Operations
Properties of
Equality
Radicals
Algebraic
Expressions
Polynomials
Poly Add/Subtract
Combining Like
Terms
Muitiplying Poly's
Trinomial times Binomial
Conjugate the
Denominator
Factoring
Polynomials
GCF
Factor By Grouping ac-grouping method Rational Expressions

$$
\text { Try This One! Reduce } \frac{a-b}{b-a} \text { to lowest terms. }
$$

