Tim Busken

Functions
Table of Contents
Functions
Vertical Line Test
Power Functions
Reciprocal Functions
Root Functions
Symmetry
Even \& Odd Functions
Transformation
Vertical Shift
Horizontal Shift
Combining Horizontal and Vertical Shifts
Reflection
Vertical Stretching and Shrinking
Combining Shifting Stretching and Reflecting

Chapter 2

Professor Tim Busken

Grossmont College
Mathematics Department

August 28, 2013

Chapter 2
Tim Busken

Functions

Table of Contents

Functions

The graph of a function f is the graph of the equation $y=f(x)$. A function is called continuous if its graph has no breaks or holes.

Table of Contents

(1) Functions

Table of Contents
Functions
Vertical Line Test
Power Functions
Reciprocal Functions
Root Functions
Symmetry
Even \& Odd Functions
Transformation
Vertical Shift
Horizontal Shift
Combining Horizontal and Vertical Shifts
Reflection
Vertical Stretching and Shrinking
Combining Shifting, Stretching and Reflecting
Horizontal Stretching and Shrinking
Graphing using Translations
Intersection of Sets
Function Combinations
Function Composition
One to One Functions
Inverse Functions

Tim Busken

We can read the value of $f(x)$ from the graph as being the height of the graph above a point x.

Table of Contents

Functions

Tim Busken

We can read the value of $f(x)$ from the graph as being the height of the graph above a point x.

Tim Busken
We can read the value of $f(x)$ from the graph as being the height of the graph above a point x.

Functions

Table of Contents Functions

Symmetry

Even \& Odd Functions
Transtormation
Vertical Shift
Horizontal Shift

Tim Busken
We can read the value of $f(x)$ from the graph as being the height of the graph above a point x.

Functions Table of Contents Functions

Symmetry

Even \& Odd Functions
Transtormation
Vertical Shift
Horizontal Shift

Tim Busken

We can read the value of $f(x)$ from the graph as being the height of the graph above a point x.

Functions

Table of Contents Functions

Definition

A function is a special type of relation. A FUNCTION is a correspondence between a first set, called the domain, and a second set, called the range, such that each member of the domain corresponds to exactly one member of the range.

However, different elements of the domain are allowed to have a correspondence with the same value in the range.

Figure : F is a FUNCTION (left), R is a relation but NOT A FUNCTION (center) \& an example of a function (right) whose two different domain elements are associated with the same range element.

Tim Busken
Functions
Table of Contenis Functions

Vertical Line Test

Theorem (VERTICAL LINE TEST (VLT))

A curve in the coordinate plane is the graph of a function if and only if there is no vertical line that crosses the graph more than once.

Figure: GRAPHS OF $y=x^{2}$ and $x=y^{2}$

Chapter 2

Tim Busken

Functions
Table of Contents Functions

Vertical Line Test Power Functions Reciprocal Functions
Root Functions
Symmetry
Even \& Odd Functions Transformation
Vertical Shift
Horizontal Shift
Combining Horizontal and Vertical Shifts Reflection
Vertical Stretching and Shrinking
Combining Shifting Stretching and Reflecting Horizontal Stretching and Shrinking Graphing using Translations

Does the equation $x^{2}+y^{2}=16$ define y as a function of x ?

Tim Busken

$p(x)=x^{n}$ is called a power function.

Functions
Table of Contents Functions Vertical Line Test Power Functions Reciprocal Functions Root Functions Symmetry Even \& Odd Functions Transformation Vertical Shift Horizontal Shift Combining Horizontal and Vertical Shifts Reflection Vertical Stretching and Shrinking
Combining Shifting. Stretching and Reflecting Horizontal Stretching and Shrinking Graphing using Translations

四 If n is even, the graph of $f(x)=x^{n}$ is similar to the parabola $y=x^{2}$.
四 If n is odd, the graph of $f(x)=x^{n}$ is similar to the cubic $y=x^{3}$.

Tim Busken
Functions
Table of Contents

Functions

 Verical Line TestPower Functions
Reciprocal Functions Root Functions

Symmetry

Even $\&$ Odd Functions
Transformation
Vertical Shift
Horizontal Shift
Combining Horizontal and Vertical Shifts
Reflection
Vertical Stretching and Shrinking
Combining Shifting． Stretching and Reflecting Horizontal Stretching and Shrinking

$$
p(x)=x^{n} \text { is called a power function. }
$$

（1⿴囗⿰丨丨丁口
（1）If n is odd，the graph of $f(x)=x^{n}$ is similar to the cubic $y=x^{3}$ ．

Tim Busken
Functions
Table of Contents

Functions

 Vertical Line TestPower Functions
Reciprocal Functions
Root Functions
Symmetry
Even \& Odd Functions
Transformation
Vertical Shift
Horizontal Shift
Combining Horizontal and Vertical Shifts
Reflection
Vertical Stretching and Shrinking
Combining Shifting. Stretching and Reflecting

$$
p(x)=x^{n} \text { is called a power function. }
$$

四 If n is even, the graph of $f(x)=x^{n}$ is similar to the parabola $y=x^{2}$.
(1) If n is odd, the graph of $f(x)=x^{n}$ is similar to the cubic $y=x^{3}$.

Chapter 2
Tim Busken
Functions
Table of Contents

Functions

 Vertical Line TestPower Functions
Reciprocal Functions
Root Functions
Symmetry
Even \& Odd Functions
Transformation
Vertical Shift
Horizontal Shift
Combining Horizontal and Vertical Shifts
Reflection
Vertical Stretching and Shrinking
Combining Shifting. Stretching and Reflecting

$$
p(x)=x^{n} \text { is called a power function. }
$$

四 If n is even, the graph of $f(x)=x^{n}$ is similar to the parabola $y=x^{2}$.
(1) If n is odd, the graph of $f(x)=x^{n}$ is similar to the cubic $y=x^{3}$.

Chapter 2
Tim Busken
Functions
Table of Contents

Functions

 Vertical Line TestPower Functions
Reciprocal Functions
Root Functions
Symmetry
Even \& Odd Functions
Transformation
Vertical Shift
Horizontal Shitt
Combining Horizontal and Vertical Shitts
Reflection
Vertical Stretching and Shrinking
Combining Shifting. Stretching and Reflecting

$$
p(x)=x^{n} \text { is called a power function. }
$$

四 If n is even, the graph of $f(x)=x^{n}$ is similar to the parabola $y=x^{2}$.
(10) If n is odd, the graph of $f(x)=x^{n}$ is similar to the cubic $y=x^{3}$.

$$
p(x)=x^{n} \text { is called a power function. }
$$

Functions

Table of Contents

Functions

 Vertical Line TestPower Functions

If n is even, the graph of $f(x)=x^{n}$ is similar to the parabola $y=x^{2}$.
四 If n is odd, the graph of $f(x)=x^{n}$ is similar to the cubic $y=x^{3}$.

Tim Busken

Functions

Table of Contents

Functions

 Vertical Line TestPower Functions

$$
p(x)=x^{n} \text { is called a power function. }
$$

TT. If n is even, the graph of $f(x)=x^{n}$ is similar to the parabola $y=x^{2}$.
四 If n is odd, the graph of $f(x)=x^{n}$ is similar to the cubic $y=x^{3}$.

Tim Busken

Functions

Table of Contents

Functions

 Vertical Line TestPower Functions
Reciprocal Functions
Root Functions
Symmetry
Even \& Odd Functions
Transformation
Vertical Shift
Horizontal Shift

$$
p(x)=x^{n} \text { is called a power function. }
$$

TT. If n is even, the graph of $f(x)=x^{n}$ is similar to the parabola $y=x^{2}$.
(1) If n is odd, the graph of $f(x)=x^{n}$ is similar to the cubic $y=x^{3}$.

Tim Busken

Functions

Table of Contents

Functions

 Vertical Line TestPower Functions
Reciprocal Functions
Root Functions
Symmetry
Even \& Odd Functions
Transformation
Vertical Shift
Horizontal Shift

$$
p(x)=x^{n} \text { is called a power function. }
$$

TT. If n is even, the graph of $f(x)=x^{n}$ is similar to the parabola $y=x^{2}$.
四 If n is odd, the graph of $f(x)=x^{n}$ is similar to the cubic $y=x^{3}$.

Tim Busken

$f(x)=\frac{1}{x^{n}}$ is called a reciprocal function.

Chapter 2
Tim Busken
$f(x)=\frac{1}{x^{n}}$ is called a reciprocal function.
Functions
Table of Contenis
Functions
Verical Line Test
Power Functions
Reciprocal Functions Root Functions
Symmetry
Even \& Odd Functions
Transformation
Vertical Shift

Horizontal Shift

 Combining Horizontal and Vertical ShiftsReflection
Vertical Stretching and Shrinking
Combining Shifting. Stretching and Reflecting
Horizontal Stretching and Shrinking
Graphing using Translations
Intersection of Sets
Function
Combinations
Function Composition One to One Functions Inverse Functions
n even

Chapter 2
Tim Busken
$f(x)=\frac{1}{x^{n}}$ is called a reciprocal function.
Functions
Table of Contents
Functions
Vertical Line Test
Power Functions
Reciprocal Functions Root Functions
Symmetry
Even \& Odd Functions
Transformation
Vertical Shift
Horizontal Shift

Combining Horizontal

 and Vertical ShiftsReflection
Vertical Stretching and Shrinking
Combining Shifting. Stretching and Reflecting Horizontal Stretching and Shrinking
Graphing using Translations
Intersection of Sets
Function
Combinations
Function Composition One to One Functions Inverse Functions

Chapter 2
Tim Busken
$f(x)=\frac{1}{x^{n}}$ is called a reciprocal function.
Functions
Table of Contents
Functions
Vertical Line Test
Power Functions
Reciprocal Functions Root Functions
Symmetry
Even \& Odd Functions Transformation
Vertical Shift

Horizontal Shift

Combining Horizontal

 and Vertical ShiftsReflection
Vertical Stretching and Shrinking
Combining Shifting. Stretching and Reflecting
Horizontal Stretching and Shrinking
Graphing using Translations
Intersection of Sets
Function
Combinations
Function Composition One to One Functions Inverse Functions

Chapter 2
Tim Busken
$f(x)=\frac{1}{x^{n}}$ is called a reciprocal function.
Functions
Table of Contents
Functions
Vertical Line Test
Power Functions
Reciprocal Functions Root Functions
Symmetry
Even \& Odd Functions Transformation
Vertical Shift

Horizontal Shift

Combining Horizontal and Vertical Shifts
Reflection
Vertical Stretching and Shrinking
Combining Shifting. Stretching and Reflecting
Horizontal Stretching and Shrinking
Graphing using Translations
Intersection of Sets
Function
Combinations
Function Composition One to One Functions Inverse Functions

Chapter 2
Tim Busken
$f(x)=\frac{1}{x^{n}}$ is called a reciprocal function.
Functions
Table of Contents
Functions
Vertical Line Test
Power Functions
Reciprocal Functions
Root Functions
Symmetry
Even \& Odd Functions
Transformation
Vertical Shift

Horizontal Shift

Combining Horizontal and Vertical Shifts
Reflection
Vertical Stretching and Shrinking
Combining Shifting. Stretching and Reflecting Horizontal Stretching and Shrinking
Graphing using Translations
Intersection of Sets
Function
Combinations
Function Composition One to One Functions Inverse Functions

Chapter 2
Tim Busken
$f(x)=\frac{1}{x^{n}}$ is called a reciprocal function.
Functions
Table of Contents
Functions

Vertical Line Test

Power Functions
Reciprocal Functions
Root Functions
Symmetry
Even \& Odd Functions
Transformation
Vertical Shift

Horizontal Shift

Combining Horizontal and Vertical Shifts
Reflection
Vertical Stretching and Shrinking
Combining Shifting. Stretching and Reflecting Horizontal Stretching and Shrinking
Graphing using Translations
Intersection of Sets
Function
Combinations
Function Composition One to One Functions Inverse Functions

Chapter 2
Tim Busken
$f(x)=\frac{1}{x^{n}}$ is called a reciprocal function.
Functions
Table of Contents
Functions

Vertical Line Test

Power Functions
Reciprocal Functions Root Functions
Symmetry
Even \& Odd Functions

Transformation

Vertical Shift

Horizontal Shift

Combining Horizontal

 and Vertical ShiftsReflection
Vertical Stretching and Shrinking
Combining Shifting. Stretching and Reflecting Horizontal Stretching and Shrinking
Graphing using Translations
Intersection of Sets
Function
Combinations
Function Composition One to One Functions Inverse Functions

Chapter 2
Tim Busken
$f(x)=\frac{1}{x^{n}}$ is called a reciprocal function.
Functions
Table of Contents
Functions

Vertical Line Test

Power Functions
Reciprocal Functions
Root Functions
Symmetry
Even \& Odd Functions
Transformation
Vertical Shift

Horizontal Shift

Combining Horizontal and Vertical Shifts
Reflection
Vertical Stretching and Shrinking
Combining Shifting.
Stretching and
Reflecting
Horizontal Stretching and Shrinking
Graphing using Translations
Intersection of Sets
Function
Combinations
Function Composition One to One Functions Inverse Functions

Chapter 2

Tim Busken

$f(x)=\sqrt[n]{x}$ is called a root function.

Functions

Table of Contents
Functions
Vertical Line Test
Power Functions
Reciprocal Functions
Root Functions
Symmetry
Even \& Odd Functions
Transformation
Vertical Shift
Horizontal Shift
Combining Horizontal and Vertical Shifts
Reflection
Vertical Stretching and Shrinking
Combining Shifting.
Stretching and
Reflecting
Horizontal Stretching and Shrinking

Chapter 2
Tim Busken

Functions

Table of Content Functions Vertical Line Test Power Functions Reciprocal Functions Root Functions
Symmetry
Even \& Odd Functions
Transformation
Vertical Shift

Horizontal Shitt

 Combining Horizontal and Vertical ShittsReflection
Vertical Stretching and Shrinking

$f(x)=\sqrt[n]{x}$ is called a root function.

Chapter 2
Tim Busken

Functions

Table of Contenis Functions Verical Line Test Power Functions Reciprocal Functions Root Functions
Symmetry
Even \& Odd Functions
Transtormation
Verical Shitt

Horizontal Shitt

 Combining Horizontal and Vertical ShittsReflection
Vertical Stretching and Shrinking

$f(x)=\sqrt[n]{x}$ is called a root function.

Chapter 2
Tim Busken

Functions

Table of Contenis Functions Verical Line Test Power Functions Reciprocal Functions Root Functions
Symmetry
Even \& Odd Functions
Transtormation
Verical Shitt

Horizontal Shitt

 Combining Horizontal and Vertical ShittsReflection
Vertical Stretching and Shrinking

$f(x)=\sqrt[n]{x}$ is called a root function.

Chapter 2
Tim Busken

Functions

Table of Contenis Functions Verical Line Test Power Functions Reciprocal Functions Root Functions
Symmetry
Even \& Odd Functions
Transformation
Vertical Shift

Horizontal Shitt

 Combining Horizontal and Vertical ShittsReflection
Vertical Stretching and Shrinking

Combining Shifting.

 Stretching and ReflectingHorizontal Stretching and Shrinking Graphing using Translations
Intersection of Sets
Function
Combinations
Function Composition
One to One Functions
Inverse Functions

$f(x)=\sqrt[n]{x}$ is called a root function.

Chapter 2
Tim Busken
Functions
Table of Contents Functions Vertical Line Test Power Functions Reciprocal Functions Root Functions
Symmetry
Even \& Odd Functions
Transformation
Vertical Shift

Horizontal Shift

 Combining Horizontal and Vertical Shifts Reflection Vertical Stretching and Shrinking
$f(x)=\sqrt[n]{x}$ is called a root function.

Chapter 2
Tim Busken
Functions
Table of Contents Functions Vertical Line Test Power Functions Reciprocal Functions Root Functions
Symmetry
Even \& Odd Functions
Transformation
Vertical Shift

Horizontal Shift

 Combining Horizontal and Vertical Shifts Reflection Vertical Stretching and Shrinking
$f(x)=\sqrt[n]{x}$ is called a root function.

Chapter 2
Tim Busken
Functions
Table of Contenis Functions Vertical Line Test Power Functions Reciprocal Functions Root Functions
Symmetry
Even \& Odd Functions
Transformation
Vertical Shift

Horizontal Shift

 Combining Horizontal and Vertical Shifts Reflection Vertical Stretching and Shrinking
$f(x)=\sqrt[n]{x}$ is called a root function.

Chapter 2
Tim Busken
Functions
Table of Contenis Functions Vertical Line Test Power Functions Reciprocal Functions Root Functions
Symmetry
Even \& Odd Functions
Transformation
Vertical Shift

Horizontal Shift

 Combining Horizontal and Vertical Shifts Reflection Vertical Stretching and Shrinking
$f(x)=\sqrt[n]{x}$ is called a root function.

Tim Busken

The graph of a function has origin symmetry when for any point (x, y) on the graph, there is also a point $(-x,-y)$ on the graph.

Functions

Table of Contents

Functions

Symmetry

Even $\&$ odd Functions
Transformation
Vertical Shift

Horizontal Shift

Tim Busken

The graph of a function has y-axis symmetry if for every point (x, y), there is also a point $(-x, y)$ on the graph.

Functions
Table of Contents
Functions
Vertical Line Test
Power Functions
Reciprocal Functions Root Functions
Symmetry
Even \& Odd Functions
Transformation
Vertical Shift

Horizontal Shift

Combining Horizontal and Vertical Shifts
Reflection
Vertical Stretching and Shrinking
Combining Shifting.
Stretching and
Reflecting
Horizontal Stretching and Shrinking Graphing using Translations
Intersection of Sets
Function
Combinations
Function Composition
One to One Functions
Inverse Functions

Functions

Table of Contenis
Functions
Verrical Line Test
Power Functions
Reciprocal Functions Root Functions
Symmetry
Even \& Odd Functions
Transtormation
Vertical Shitt
Horizontal Shitt

Definition

The graph of a relation has x-axis symmetry if for every point (x, y) on the graph, the point $(x,-y)$ is also on the graph.

Can a function have x-axis symmetry?

Tim Busken
Functions
Table of Contents
Functions
Vertical Line Test
Power Functions
Reciprocal Functions
Root Functions
Symmetry
Even \& Odd Functions
Transformation
Vertical Shift
Horizontal Shift

Definition

A function $f(x)$ can be classified as (one of the following):
(1) Even
(2) Odd
(3) Neither Even Nor Odd

Figure : A function that is neither: $f(x)=x(x-2)^{2}$

Functions

Table of Contents

Functions

Vertical Line Test

Power Functions
Reciprocal Functions
Root Functions

Symmetry

Even \& Odd Functions
Transformation
Vertical Shift

Horizontal Shift

Combining Horizontal and Vertical Shifts Reflection Vertical Stretching and Shrinking
Combining Shifting. Stretching and Reflecting
Horizontal Stretching and Shrinking
Graphing using Translations
Intersection of Sets
Function
Combinations
Function Composition
One to One Functions
Inverse Functions

How to Test for Symmetry

- A function is EVEN if its graph has y-axis symmetry. If substitution of $-x$ for x leads to the same equation, i.e., If $f(-x)=f(x)$, then f is an even function.
- A function is ODD if its graph has origin symmetry. If substitution of $-x$ for x leads to the negative version of f, i.e.,
If $f(-x)=-f(x)$, then f is an odd function.

Chapter 2

Tim Busken

Functions

Table of Contents
Functions
Vertical Line Test
Power Functions
Reciprocal Functions
Root Functions
Symmetry
Even \& Odd Functions
Transformation
Vertical Shift
Horizontal Shift
Combining Horizontal and Vertical Shifts

Reflection
Vertical Stretching and Shrinking
Combining Shifting Stretching and Reflecting Horizontal Stretching and Shrinking Graphing using Translations

Intersection of Sets
Function
Combinations
Function Composition
One to One Functions
Inverse Functions

If a, b, c, and d are real numbers with $a \neq 0$, then $y=a \cdot f(b x-c)+d$ is called a linear transformation of the function $y=f(x)$.

Functions
Table of Contents

Functions

Vertical Line Test
Power Functions
Reciprocal Functions
Root Functions
Symmetry
Even \& Odd Functions
Transformation
Vertical Shift

Horizontal Shift

Combining Horizontal and Vertical Shifts
Reflection
Vertical Stretching and Shrinking
Combining Shitting. Stretching and Reflecting Horizontal Stretching and Shrinking Graphing using Translations
Intersection of Sets
Function
Combinations
Function Composition
One to One Functions
Inverse Functions

Vertical Shifts of Graphs

Suppose $d>0$. The graph of $y=f(x)+d$ is the graph of $y=f(x)$ shifted vertically upward d units.

The graphs of $f(x)=x(x-2)^{2}$ and $f(x)+d$ (left); and the graphs of $f(x)=x^{2}$ and $g(x)=x^{2}+2$ (right).

Chapter 2

Tim Busken

Functions

Table of Contents Functions Vertical Line Test Power Functions
Reciprocal Functions Root Functions
Symmetry
Even \& Odd Functions
Transformation
Vertical Shift
Horizontal Shift
Combining Horizontal and Vertical Shifts

Reflection
Vertical Stretching and Shrinking
Combining Shifting. Stretching and Reflecting
Horizontal Stretching and Shrinking
Graphing using Translations

Intersection of Sets
Function
Combinations
Function Composition
One to One Functions Inverse Functions

Vertical Shifts of Graphs

Suppose $d>0$. The graph of $y=f(x)-d$ is the graph of $y=f(x)$ shifted vertically downward d units.

Tim Busken
Functions
Table of Contents
Functions
Vertical Line Test
Power Functions
Reciprocal Functions
Root Functions
Symmetry
Even \& Odd Functions
Transformation
Vertical Shift

Horizontal Shift

$$
g(x)=(x+2)^{2}
$$

The graphs of $f(x)=x(x-2)^{2}$ and $f(x+c)$ are given in the left panel; and the graphs of $f(x)=x^{2}$ and $g(x)=(x+2)^{2}$ are presented in the right panel above.

Chapter 2

Tim Busken

Functions

Table of Contents Functions Vertical Line Test
Power Functions
Reciprocal Functions Root Functions
Symmetry
Even \& Odd Functions
Transformation
Vertical Shift

Horizontal Shift

Combining Horizontal and Vertical Shifts

Reflection
Vertical Stretching and Shrinking
Combining Shifting, Stretching and Reflecting
Horizontal Stretching and Shrinking
Graphing using Translations
Intersection of Sets
Function
Combinations
Function Composition
One to One Functions Inverse Functions

Horizontal Shifts of Graphs

Let $c>0$. The graph of $y=f(x-c)$ is the graph of $y=f(x)$ shifted to the right c units.

Chapter 2
Tim Busken
Functions
Table of Contenis Functions Vertical Line Test
Power Functions Reciprocal Functions Root Functions
Symmetry
Even \& Odd Functions
Transformation
Vertical Shift

Horizontal Shift

Combining Horizontal and Vertical Shifts
Reflection
Vertical Stretching and Shrinking
Combining Shifting. Stretching and Reflecting Horizontal Stretching and Shrinking
Graphing using Translations
Intersection of Sets
Function
Combinations
Function Composition
One to One Functions Inverse Functions

Combining Horizontal and Vertical Shifts

Graph $y=\sqrt{x-4}+3$

Chapter 2
Tim Busken
Functions
Table of Contents

Functions

Vertical Line Test
Power Functions
Reciprocal Functions
Root Functions
Symmetry
Even \& Odd Functions
Transformation
Vertical Shift

Horizontal Shift

Combining Horizontal and Vertical Shifts
Reflection
Vertical Stretching and Shrinking
Combining Shifting. Stretching and Reflecting Horizontal Stretching and Shrinking

Graphing using

Translations
Intersection of Sets
Function
Combinations
Function Composition
One to One Functions
Inverse Functions

Combining Horizontal and Vertical Shifts

Graph $y=\sqrt{x-4}+3$
1.) $f(x)=\sqrt{x}$

Chapter 2
Tim Busken
Functions
Table of Contents

Functions

Vertical Line Test
Power Functions
Reciprocal Functions
Root Functions
Symmetry
Even \& Odd Functions
Transtormation
Vertical Shift

Horizontal Shitt

Combining Horizontal and Vertical Shifts Reflection Vertical Stretching and Shrinking
Combining Shifting. Stretching and Reflecting Horizontal Stretching and Shrinking
Graphing using
Translations
Intersection of Sets
Function
Combinations
Function Composition
One to One Functions Inverse Functions

Combining Horizontal and Vertical Shifts

Graph $y=\sqrt{x-4}+3$
1.) $f(x)=\sqrt{x}$
2.) Horizontal Shift

Chapter 2
Tim Busken
Functions
Table of Contents

Functions

Vertical Line Test
Power Functions
Reciprocal Functions
Root Functions
Symmetry
Even \& Odd Functions

Transformation

Vertical Shift

Horizontal Shift

Combining Horizontal and Vertical Shifts Reflection
Vertical Stretching and Shrinking

Combining Shifting.

 Stretching and Reflecting Horizontal Stretching and Shrinking
Graphing using

Translations
Intersection of Sets
Function
Combinations
Function Composition One to One Functions Inverse Functions

Combining Horizontal and Vertical Shifts

Graph $y=\sqrt{x-4}+3$
1.) $f(x)=\sqrt{x}$
2.) Horizontal Shift
3.) Vertical Shift

Chapter 2

Tim Busken
To graph $y=-f(x)$ reflect the graph of $f(x)$ about the x-axis.

Functions

Table of Contents
Functions
Vertical Line Test
Power Functions
Reciprocal Functions
Root Functions
Symmetry
Even \& Odd Functions
Transformation
Vertical Shift
Horizontal Shift
Combining Horizontal and Vertical Shifts

Reflection
Vertical Stretching and Shrinking
Combining Shifting. Stretching and Reflecting Horizontal Stretching and Shrinking
Graphing using Translations

Intersection of Sets Function Combinations

Chapter 2

Tim Busken
To graph $y=f(-x)$ reflect the graph of $f(x)$ about the y-axis.

Functions

Table of Contents
Functions
Vertical Line Test
Power Functions
Reciprocal Functions
Root Functions
Symmetry
Even \& Odd Functions
Transformation
Vertical Shift
Horizontal Shift
Combining Horizontal and Vertical Shifts

Reflection
Vertical Stretching and Shrinking
Combining Shifting Stretching and Reflecting
Horizontal Stretching and Shrinking
Graphing using Translations
Intersection of Sets
Function
Combinations
Function Composition
One to One Functions
Inverse Functions

Chapter 2
Tim Busken
Functions
Table of Contents

Functions

Vertical Line Test
Power Functions
Reciprocal Functions
Root Functions
Symmetry
Even \& Odd Functions
Transformation
Vertical Shift

Horizontal Shift

Combining Horizontal and Vertical Shifts
Reflection
Vertical Stretching and Shrinking
Combining Shifting. Stretching and Reflecting Horizontal Stretching and Shrinking
Graphing using
Translations
Intersection of Sets
Function
Combinations
Function Composition
One to One Functions
Inverse Functions

Vertical Stretching and Shrinking

Graphing $y=a \cdot f(x)$

If $a>1$, stretch the graph of $y=f(x)$ vertically by a factor of a.

$$
a>1
$$

Chapter 2
Tim Busken
Functions
Table of Contents

Functions

Vertical Line Test

Power Functions
Reciprocal Functions
Root Functions
Symmetry
Even \& Odd Functions

Transformation

Vertical Shift

Horizontal Shift

Combining Horizontal and Vertical Shifts
Reflection
Vertical Stretching and Shrinking
Combining Shifting. Stretching and Reflecting Horizontal Stretching and Shrinking
Graphing using
Translations
Intersection of Sets
Function
Combinations
Function Composition
One to One Functions
Inverse Functions

Vertical Stretching and Shrinking

Graphing $y=a \cdot f(x)$

If $a>1$, stretch the graph of $y=f(x)$ vertically by a factor of a. If $0<a<1$, shrink the graph of $y=f(x)$ vertically by a factor of a.

$a>1$

$0<a<1$

Chapter 2

Tim Busken

Functions

Table of Contents Functions Vertical Line Test
Power Functions
Reciprocal Functions
Root Functions
Symmetry
Even \& Odd Functions
Transformation
Vertical Shift
Horizontal Shift
Combining Horizontal and Vertical Shifts
Reflection
Vertical Stretching and Shrinking
Combining Shifting, Stretching and Reflecting
Horizontal Stretching and Shrinking
Graphing using Translations
Intersection of Sets
Function
Combinations
Function Composition
One to One Functions Inverse Functions

Example: $f(x)=a \cdot x^{2}$

If $a>1$, stretch the graph of $y=f(x)$ vertically by a factor of a.
If $0<a<1$, shrink the graph of $y=f(x)$ vertically by a factor of a.

$$
a>1
$$

Tim Busken

Functions

Table of Contenis

Functions

Vertical Line Test
Power Functions
Reciprocal Functions
Root Functions
Symmetry
Even \& Odd Functions
Transtormation
Verical Shitt

Horizontal Shith

Combining Horizontal and Vertical Shitts Reflection
Vertical Stretching and Shrinking
Combining Shifting. Stretching and Reflecting Horizontal Stretching and Shrinking
Graphing using Translations
Intersection of Sets
Function
Combinations
Function Composition
One to One Functions
Inverse Functions

Example: $f(x)=a \cdot x^{2}$

If $a>1$, stretch the graph of $y=f(x)$ vertically by a factor of a.
If $0<a<1$, shrink the graph of $y=f(x)$ vertically by a factor of a.

$0<a<1$

Chapter 2
Tim Busken
Functions
Table of Contents Functions Vertical Line Test

Power Functions

Reciprocal Functions
Root Functions

Symmetry

Even \& Odd Functions
Transtormation
Vertical Shift

Horizontal Shift

Combining Horizontal and Vertical Shitts

Reflection

Vertical Stretching and Shrinking
Combining Shifting. Stretching and Reflecting
Horizontal Stretching and Shrinking
Graphing using Translations
Intersection of Sets
Function
Combinations
Function Composition
One to One Functions
Inverse Functions

Reflection and Vertical Shrinking
 \& Stretching $y=x^{2}$

Chapter 2
Tim Busken
Functions
Table of Contenis

Functions

Vertical Line Test
Power Functions
Reciprocal Functions
Root Functions
Symmetry
Even \& Odd Functions
Transtormation
Vertical Shift

Horizontal Shift

Combining Horizontal and Vertical Shifts
Reflection
Vertical Stretching and Shrinking
Combining Shifting, Stretching and Reflecting
Horizontal Stretching and Shrinking

Graphing using

 TranslationsIntersection of Sets
Function
Combinations
Function Composition
One to One Functions Inverse Functions

Combining Shifting, Stretching and Reflecting

Graph $y=1-2(x-3)^{2}$

Chapter 2
Tim Busken
Functions
Table of Contenis
Functions
Vertical Line Test
Power Functions
Reciprocal Functions Root Functions

Symmetry

Even \& Odd Functions

Transtormation

Vertical Shift

Horizontal Shift

 Combining Horizontal and Vertical Shifts
Reflection

Vertical Stretching and Shrinking
Combining Shifting, Stretching and Reflecting
Horizontal Stretching and Shrinking

Graphing using

Translations
Intersection of Sets

Function

Combinations
Function Composition
One to One Functions Inverse Functions

Combining Shifting, Stretching and Reflecting

Graph $y=1-2(x-3)^{2}$
1.) $f(x)=x^{2}$

Chapter 2
Tim Busken
Functions
Table of Contenis

Functions

Vertical Line Test
Power Functions
Reciprocal Functions
Root Functions

Symmetry

Even \& Odd Functions

Transtormation

Vertical Shift

Horizontal Shift

Combining Horizontal and Vertical Shifts
Reflection
Vertical Stretching and Shrinking
Combining Shifting, Stretching and Reflecting
Horizontal Stretching and Shrinking
Graphing using
Translations
Intersection of Sets
Function
Combinations
Function Composition
One to One Functions Inverse Functions

Combining Shifting, Stretching and Reflecting

Graph $y=1-2(x-3)^{2}$
1.) $f(x)=x^{2}$
2.) Horizontal Shift

Chapter 2
Tim Busken
Functions

Table of Contenis

Functions

Vertical Line Test
Power Functions
Reciprocal Functions
Root Functions

Symmetry

Even \& Odd Functions

Transtormation

Vertical Shift

Horizontal Shift

Combining Horizontal and Vertical Shitts
Reflection
Vertical Stretching and Shrinking
Combining Shifting, Stretching and Reflecting
Horizontal Stretching and Shrinking
Graphing using
Translations
Intersection of Sets
Function
Combinations
Function Composition
One to One Functions Inverse Functions

Combining Shifting, Stretching and Reflecting

Graph $y=1-2(x-3)^{2}$
1.) $f(x)=x^{2}$
2.) Horizontal Shift
3.) Reflection and Vertical Stretch

Chapter 2
Tim Busken
Functions
Table of Contenis

Functions

Vertical Line Test
Power Functions
Reciprocal Functions
Root Functions

Symmetry

Even \& Odd Functions

Transtormation

Vertical Shift

Horizontal Shift

Combining Horizontal and Vertical Shitts
Reflection
Vertical Stretching and Shrinking
Combining Shifting, Stretching and Reflecting Horizontal Stretching and Shrinking Graphing using Translations

Intersection of Sets

Function
Combinations
Function Composition
One to One Functions Inverse Functions

Combining Shifting, Stretching and Reflecting

Graph $y=1-2(x-3)^{2}$
1.) $f(x)=x^{2}$
2.) Horizontal Shift
3.) Reflection and Vertical Stretch
4.) Vertical Shift

Chapter 2
Tim Busken
Functions
Table of Contents
Functions
Vertical Line Test
Power Functions
Reciprocal Functions
Root Functions
Symmetry
Even \& Odd Functions
Transformation
Vertical Shift
Horizontal Shift
Combining Horizontal and Vertical Shifts
Reflection
Vertical Stretching and Shrinking
Combining Shifting. Stretching and Reflecting
Horizontal Stretching and Shrinking
Graphing using Translations
Intersection of Sets
Function
Combinations
Function Composition
One to One Functions
Inverse Functions

Horizontal Stretching and Shrinking

Graphing $y=f(b \cdot x)$

If $b>1$, shrink the graph of $y=f(x)$ horizontally by a factor of $1 / b$.

Chapter 2
Tim Busken
Functions
Table of Contents
Functions
Vertical Line Test
Power Functions
Reciprocal Functions
Root Functions
Symmetry
Even \& Odd Functions Transformation
Vertical Shift

Horizontal Shift

Combining Horizontal and Vertical Shifts
Reflection
Vertical Stretching and Shrinking
Combining Shifting. Stretching and Reflecting
Horizontal Stretching and Shrinking
Graphing using Translations
Intersection of Sets
Function
Combinations
Function Composition
One to One Functions
Inverse Functions

Horizontal Stretching and Shrinking

Graphing $y=f(b \cdot x)$

If $b>1$, shrink the graph of $y=f(x)$ horizontally by a factor of $1 / b$.
If $0<b<1$, stretch the graph of $y=f(x)$ horizontally by a factor of $1 / b$.

Tim Busken

Functions
Table of Contents
Functions
Vertical Line Test
Power Functions
Reciprocal Functions
Root Functions
Symmetry
Even \& Odd Functions
Transformation
Vertical Shift
Horizontal Shift

Reflection
Vertical Stretching and Shrinking
Combining Shifting. Stretching and Reflecting

If a, b, c, and d are real numbers with $a \neq 0$, then $y=a \cdot f(b x-c)+d$ is called a linear transformation of $y=f(x)$.

$$
f(x)=\sqrt[3]{x}
$$

All of the transformations of a function form a family of functions. For example, $y=-3 \sqrt[3]{x-1}+1$ (graph below) is in the cube root family of functions.

Chapter 2
Tim Busken

Linear Transformation

$$
y=a \cdot f(b x-c)+d
$$

a represents the reflection and vertical shrinking or stretching of f.
b represents the horizontal shrinking or stretching of f.
c represents the horizontal translation of f.
d represents the vertical translation of f.

Chapter 2
Tim Busken

Graphing using Translations

$$
y=a \cdot f(b x-c)+d
$$

1.) Identify and graph $f(x)$. Use symmetry, if possible.
2.) Horizontal Shift
3.) Reflection and horizontal and/or vertical shrinking or stretching
4.) Vertical Shift

Chapter 2

Tim Busken

Functions

Table of Contents
Functions
Vertical Line Test
Power Functions
Reciprocal Functions
Root Functions
Symmetry
Even \& Odd Functions Transformation

Vertical Shift
Horizontal Shift
Combining Horizontal and Vertical Shifts

Reflection
Vertical Stretching and Shrinking
Combining Shifting. Stretching and Reflecting
Horizontal Stretching and Shrinking
Graphing using Translations

Intersection of Sets

Function

Combinations
Function Composition
One to One Functions

Chapter 2

Tim Busken

Functions
Table of Contents
Functions
Vertical Line Test
Power Functions
Reciprocal Functions
Root Functions
Symmetry
Even \& Odd Functions
Transformation
Vertical Shift
Horizontal Shift
Combining Horizontal and Vertical Shifts
Reflection
Vertical Stretching and Shrinking
Combining Shifting.
Stretching and
Reflecting
Horizontal Stretching and Shrinking
Graphing using Translations
1.) $f(x)=\sqrt[3]{x}$

x	$f(x)=\sqrt[3]{x}$
-8	-2
-1	-1
0	0
1	1
8	2

Chapter 2
Graph $y=-3 \cdot \sqrt[3]{x-1}+1$

1.) $f(x)=\sqrt[3]{x}$
2.) Horizontal Shift

Table of Contents

Functions

Functions
Vertical Line Test
Power Functions
Reciprocal Functions
Root Functions
Symmetry
Even \& Odd Functions
Transformation
Vertical Shift
Horizontal Shift
Combining Horizontal and Vertical Shifts
Reflection
Vertical Stretching and Shrinking
Combining Shifting,
Stretching and
Reflecting
Horizontal Stretching and Shrinking
Graphing using Translations

Intersection of Sets
Function
Combinations
Function Composition
One to One Functions
Inverse Functions
$(9,2)$

x	$y=\sqrt[3]{x-1}$
-7	-2
0	-1
1	0
2	1
9	2

Chapter 2
Graph $y=-3 \cdot \sqrt[3]{x-1}+1$

1.) $f(x)=\sqrt[3]{x}$
2.) Horizontal Shift
3.) Reflection and Vertical Stretching

x	$y=\sqrt[3]{x-1}$	$y=-3 \sqrt[3]{x-1}$
-7	-2	6
0	-1	3
1	0	0
2	1	-3
9	2	-6

Chapter 2

Tim Busken

Functions
Table of Contents
Functions
Vertical Line Test
Power Functions
Reciprocal Functions
Root Functions
Symmetry
Even \& Odd Functions
Transformation
Vertical Shift
Horizontal Shift
Combining Horizontal and Vertical Shifts

Reflection
Vertical Stretching and Shrinking
Combining Shifting, Stretching and Reflecting

Graphing using Translations
Intersection of Sets
Function
Combinations
Function Composition
One to One Functions
Inverse Functions

Graph $y=-3 \cdot \sqrt[3]{x-1}+1$

1.) $f(x)=\sqrt[3]{x}$
2.) Horizontal Shift
3.) Reflection and Vertical Stretching
4.) Vertical Shift

x	$y=-3 \sqrt[3]{x-1}+1$
-7	7
0	4
1	1
2	-2
9	-5

Chapter 2
Tim Busken
Functions
Table of Contents

Functions

Vertical Line Test

Power Functions
Reciprocal Functions
Root Functions
Symmetry
Even \& Odd Functions
Transformation
Vertical Shift
Horizontal Shift
Combining Horizontal and Vertical Shifts
Reflection
Vertical Stretching and Shrinking
Combining Shifting. Stretching and Reflecting Horizontal Stretching and Shrinking
Graphing using Translations

Graph $y=-3 \cdot \sqrt[3]{x-1}+1$

1.) $f(x)=\sqrt[3]{x}$
2.) Horizontal Shift
3.) Reflection and Vertical Stretching
4.) Vertical Shift

$$
y=-3 \cdot \sqrt[3]{x-1}+1=-3 \cdot f(x-1)+1
$$

has the following characteristics:

- domain: $x \in(-\infty, \infty)$
- range: $y \in(-\infty, \infty)$
- $g(x)$ is a decreasing function. $g(x) \downarrow$ for $x \in(-\infty, \infty)$

Tim Busken
Functions
Table of Contents Functions Vertical Line Test Power Functions

Set Intersection

The intersection of two sets A and B, written $A \cap B$, is the set of all elements (numbers) that are in both A and B . The \cap symbol means the word "and."

Example: Suppose $A=\{1,2,3,4\}$ and $B=\{2,4,20\}$. Then $A \cap B=\{2,4\}$

Chapter 2
Tim Busken
Functions
Table of Contents

Functions

Vertical Line Test
Power Functions
Reciprocal Functions
Root Functions
Symmetry
Even \& Odd Functions
Transformation
Vertical Shift
Horizontal Shift
Combining Horizontal and Vertical Shifts
Reflection
Vertical Stretching and Shrinking
Combining Shifting.
Stretching and
Reflecting
Horizontal Stretching and Shrinking
Graphing using Translations
Intersection of Sets
Function
Combinations
Function Composition
One to One Functions
Inverse Functions

Set Intersection

The intersection of two sets A and B, written $A \cap B$, is the set of all elements (numbers) that are in both A and B . The \cap symbol means the word "and."

Example: Suppose $A=\{1,2,3,4\}$ and $B=\{2,4,20\}$. Then $A \cap B=\{2,4\}$
Example: $\mathrm{A}=[0, \infty)$ and $\mathrm{B}=(-\infty, \infty)$.

Chapter 2
Tim Busken
Functions
Table of Contents

Functions

Vertical Line Test
Power Functions
Reciprocal Functions
Root Functions
Symmetry
Even \& Odd Functions
Transformation
Vertical Shift
Horizontal Shift
Combining Horizontal and Vertical Shifts
Reflection
Vertical Stretching and Shrinking
Combining Shifting.
Stretching and
Reflecting
Horizontal Stretching and Shrinking
Graphing using Translations
Intersection of Sets
Function
Combinations
Function Composition
One to One Functions
Inverse Functions

Set Intersection

The intersection of two sets A and B, written $A \cap B$, is the set of all elements (numbers) that are in both A and B . The \cap symbol means the word "and."

Example: Suppose $A=\{1,2,3,4\}$ and $B=\{2,4,20\}$. Then $A \cap B=\{2,4\}$
Example: $\mathrm{A}=[0, \infty)$ and $\mathrm{B}=(-\infty, \infty)$.

Tim Busken

Functions
Table of Contents Functions Vertical Line Test Power Functions

Even \& Odd Functions
Transformation
Vertical Shift
Horizontal Shift

Algebra of Functions

Let f and g be functions with domains A and B. Then the functions $f+g, f-g$, $f g$, and f / g are defined as follows:

$$
\begin{aligned}
(f+g)(x) & =f(x)+g(x) & & \text { domain } A \cap B \\
(f-g)(x) & =f(x)-g(x) & & \text { domain } A \cap B \\
(f \cdot g)(x) & =f(x) \cdot g(x) & & \text { domain } A \cap B \\
\left(\frac{f}{g}\right)(x) & =\frac{f(x)}{g(x)} & & \text { domain }\{x \in A \cap B \mid g(x) \neq 0\}
\end{aligned}
$$

Chapter 2
Tim Busken

Functions
Table of Contents
Functions
Vertical Line Test
Power Functions
Reciprocal Functions
Root Functions
Symmetry
Even \& Odd Functions
Transformation
Vertical Shift
Horizontal Shift

Algebra of Functions

Let f and g be functions with domains A and B. Then the functions $f+g, f-g$, $f g$, and f / g are defined as follows:

$$
\begin{aligned}
(f+g)(x) & =f(x)+g(x) & & \text { domain } A \cap B \\
(f-g)(x) & =f(x)-g(x) & & \text { domain } A \cap B \\
(f \cdot g)(x) & =f(x) \cdot g(x) & & \text { domain } A \cap B \\
\left(\frac{f}{g}\right)(x) & =\frac{f(x)}{g(x)} & & \text { domain }\{x \in A \cap B \mid g(x) \neq 0\}
\end{aligned}
$$

Example: Suppose $f(x)=\sqrt{x}, g(x)=x^{2}$ and $h(x)=(f+g)(x)=\sqrt{x}+x^{2}$.

Chapter 2
Tim Busken
Functions

Table of Contents

Functions

Vertical Line Test
Power Functions
Reciprocal Functions
Root Functions
Symmetry
Even \& Odd Functions
Transformation
Vertical Shift
Horizontal Shift
Combining Horizontal and Vertical Shifts
Reflection
Vertical Stretching and Shrinking
Combining Shifting,
Stretching and
Reflecting
Horizontal Stretching and Shrinking
Graphing using Translations
Intersection of Sets
Function
Combinations
Function Composition
One to One Functions Inverse Functions

Algebra of Functions

Let f and g be functions with domains A and B. Then the functions $f+g, f-g$, $f g$, and f / g are defined as follows:

$$
\begin{aligned}
(f+g)(x) & =f(x)+g(x) & & \text { domain } A \cap B \\
(f-g)(x) & =f(x)-g(x) & & \text { domain } A \cap B \\
(f \cdot g)(x) & =f(x) \cdot g(x) & & \text { domain } A \cap B \\
\left(\frac{f}{g}\right)(x) & =\frac{f(x)}{g(x)} & & \text { domain }\{x \in A \cap B \mid g(x) \neq 0\}
\end{aligned}
$$

Example: Suppose $f(x)=\sqrt{x}, \quad g(x)=x^{2}$ and $h(x)=(f+g)(x)=\sqrt{x}+x^{2}$.

Tim Busken

Functions
Table of Contents Functions
Vertical Line Test
Power Functions
Reciprocal Functions
Root Functions
Symmetry
Even \& Odd Functions Transformation
Vertical Shift
Horizontal Shift
Combining Horizontal and Vertical Shifts Reflection
Vertical Stretching and Shrinking
Combining Shifting Stretching and Reflecting Horizontal Stretching and Shrinking Graphing using Translations
Intersection of Sets Function Combinations

Composition of Functions

If f and g are two functions, the composition of f and g, written $f \circ g$ is defined by the equation

$$
f \circ g=f(g(x))
$$

provided that $g(x)$ is in the domain of f.

Example: Suppose $f(x)=\sqrt{x}$ and $g(x)=2 x+1$. Then $f(g(x))=f(2 x+1)=\sqrt{2 x+1}$.

Composition of Functions

If f and g are two functions, the composition of f and g, written $f \circ g$ is defined by the equation

$$
f \circ g=f(g(x))
$$

provided that $g(x)$ is in the domain of f.

Example: Suppose $f(x)=\sqrt{x}$ and $g(x)=2 x+1$. Then $f(g(x))=f(2 x+1)=\sqrt{2 x+1}$.

Example: Suppose $g \equiv\{(1,2),(3,4),(5,6)\}$ and $f \equiv\{(2,8),(4,9),(1,1)\}$. Find $f \circ g$.
Solution: Since $g(1)=2$ and $f(2)=8$, then $f(g(1))=8$, and $(1,8)$ is an ordered pair in $f \circ g$. Also since $g(3)=4$ and $f(4)=9$, then $f(g(3))=9$, and $(3,9)$ is an ordered pair in $f \circ g$. Now $g(5)=6$ but 6 is not in the domain of f. So there are only two ordered pairs in $f \circ g$, namely $f \circ g \equiv\{(1,8),(3,9)\}$

Tim Busken

Functions
Table of Contents Functions
Vertical Line Test
Power Functions
Reciprocal Functions
Root Functions
Symmetry
Even \& Odd Functions
Transformation
Vertical Shift
Horizontal Shift
Combining Horizontal and Vertical Shifts
Reflection
Vertical Stretching and Shrinking
Combining Shifting. Stretching and Reflecting
Horizontal Stretching and Shrinking
Graphing using Translations
Intersection of Sets
Function
Combinations
Function Composition

Composition of Functions

If f and g are two functions, the composition of f and g, written $f \circ g$ is defined by the equation

$$
f \circ g=f(g(x))
$$

provided that $g(x)$ is in the domain of f.

Example: Suppose $f(x)=\sqrt{x}$ and $g(x)=2 x+1$. Then $f(g(x))=f(2 x+1)=\sqrt{2 x+1}$.

Example: Suppose $g \equiv\{(1,2),(3,4),(5,6)\}$ and $f \equiv\{(2,8),(4,9),(1,1)\}$. Find $f \circ g$.
Solution: Since $g(1)=2$ and $f(2)=8$, then $f(g(1))=8$, and $(1,8)$ is an ordered pair in $f \circ g$. Also since $g(3)=4$ and $f(4)=9$, then $f(g(3))=9$, and $(3,9)$ is an ordered pair in $f \circ g$. Now $g(5)=6$ but 6 is not in the domain of f. So there are only two ordered pairs in $f \circ g$, namely $f \circ g \equiv\{(1,8),(3,9)\}$

Comment: the domain of g is $\{1,3,5\}$ while the domain of $f \circ g$ is $\{1,3\}$. In order to find the domain of $f \circ g$ we remove from the domain of g any number x such that $g(x)$ is not in the domain of f.

Chapter 2

Tim Busken

Functions

Table of Contents

Functions

Vertical Line Test
Power Functions
Reciprocal Functions
Root Functions
Symmetry
Even \& Odd Functions
Transformation
Vertical Shift
Horizontal Shift
Combining Horizontal and Vertical Shifts
Reflection
Vertical Stretching and Shrinking
Combining Shifting. Stretching and Reflecting

One to one functions have inverses!
A function f with domain D and range R is a one to one function if either of the following equivalent conditions is satisfied:

Whenever $x_{1} \neq x_{2}$ in D, then $f\left(x_{1}\right) \neq f\left(x_{2}\right)$ in R.
Whenever $f\left(x_{1}\right)=f\left(x_{2}\right)$ in R, then $x_{1}=x_{2}$ in D .

Example: $f(x)=x^{2}$ is NOT a one to one function since for $x_{1}=-2$ and $x_{2}=2$, it is true that $x_{1} \neq x_{2}$ and $f\left(x_{1}\right)=f\left(x_{2}\right)=4$.

Chapter 2
Tim Busken
Functions
Table of Contents
Functions

Vertical Line Test

Power Functions
Reciprocal Functions
Root Functions

Symmetry

Even \& Odd Functions
Transformation
Vertical Shift
Horizontal Shift
Combining Horizontal and Vertical Shifts
Reflection
Vertical Stretching and Shrinking
Combining Shifting. Stretching and Reflecting Horizontal Stretching and Shrinking
Graphing using Translations
Intersection of Sets
Function
Combinations
Function Composition
One to One Functions Inverse Functions

The Horizontal Line Test

A function f is one to one if and only if every horizontal line intersects the graph of f in at most one point.

$$
f(x)=x^{2}
$$

is not one to one

but $f(x)=x^{3}$
is one to one.

Inverse Function

Suppose f is a one to one function, with domain D and range R. The inverse function of f is the function denoted f^{-1} with domain R and range D provided that

$$
f^{-1}(f(x))=x
$$

Note: A function has an inverse (function) only when it is one to one.

Inverse Function

Functions
Table of Contents

Functions

Vertical Line Test

Power Functions
Reciprocal Functions
Root Functions
Symmetry
Even \& Odd Functions
Transformation
Vertical Shift
Horizontal Shift
Combining Horizontal and Vertical Shifts
Reflection
Vertical Stretching and Shrinking
Combining Shifting. Stretching and Reflecting Horizontal Stretching and Shrinking
Graphing using Translations
Intersection of Sets
Function
Combinations
Function Composition
One to One Functions
Inverse Functions

Suppose f is a one to one function, with domain D and range R. The inverse function of f is the function denoted f^{-1} with domain R and range D provided that

$$
f^{-1}(f(x))=x
$$

Note: A function has an inverse (function) only when it is one to one.

CAUTION: $f^{-1}(x) \neq f(x)^{-1}$

- $f^{-1}(x)$ is notation for the function inverse of a one to one function f
- $f(x)^{-1}=(f(x))^{-1}=\frac{1}{f(x)}$ is the multiplicative inverse of the number $f(x)$.

Example: Suppose f is one-to-one and $f(-9)=15$, then $f^{-1}(15)=-9$ and $(f(-9))^{-1}=1 / 15$

Chapter 2

Properties of Inverse Functions

Tim Busken

Functions

Table of Contents
Functions
Vertical Line Test
Power Functions
Reciprocal Functions
Root Functions
Symmetry
Even \& Odd Functions
Transformation
Vertical Shift
Horizontal Shift
Combining Horizontal and Vertical Shifts

Reflection
Vertical Stretching and Shrinking
Combining Shifting.
Stretching and
Reflecting
Horizontal Stretching and Shrinking
Graphing using Translations
Intersection of Sets
Function
Combinations
Function Composition
One to One Functions
Inverse Functions

- The inverse function f^{-1} is unique.
- The domain of f^{-1} is the range of f.
- The range of f^{-1} is the domain of f. corresponding point (b, a) on the graph of $f^{-1}(x)$.

Suppose that f is a one to one function with domain D and range R . Then

- The statement $f(x)=y$ is equivalent to $f^{-1}(y)=x$

Note: The graph of $y=f^{-1}(x)$ is the reflection of the graph of $y=f(x)$ about the line $y=x$. For every point (a, b) on the graph of $f(x)$ there is a

Tim Busken

Inverse Function

How to find the inverse of a one to one function:

Functions

Table of Contents
Functions
Vertical Line Test
Power Functions
Reciprocal Functions
Root Functions
Symmetry
Even \& Odd Functions
Transformation
Vertical Shift
Horizontal Shift Combining Horizontal and Vertical Shifts Reflection Vertical Stretching and Shrinking
Combining Shifting Stretching and Reflecting Horizontal Stretching and Shrinking Graphing using Translations

Intersection of Sets Function Combinations
(1) Replace $f(x)$ with y. Then interchange x and y.
(2) Solve the resulting equation for y .
(3) Replace y with $f^{-1}(x)$.

