Tim Busken

Functions

Functions Vertical Line Test Power Functions Reciprocal Functions Root Functions

Symmetry

Even & Odd Functions

Transformation

vertical Shift

Horizontal Shift

and Vertical Shifts

Reflection

Vertical Stretching and Shrinking

Combining Shifting Stretching and Reflecting

Horizontal Stretching and Shrinking

Graphing using Translations

Intersection of Sets

Function Combinations

Function Composition

One to One Functions

Inverse Functions

Chapter 2

Professor Tim Busken

Grossmont College Mathematics Department

August 28, 2013

Tim Busken

Functions

- Functions Vertical Line Test Power Functions Reciprocal Functions Symmetry
- Even & Odd Functions
- Transformation
- Vertical Shift
- Combining Horizontal
- and Vertical Shifts Reflection
- Vertical Stretching and Shrinking
- Combining Shifting Stretching and Reflecting
- Horizontal Stretching and Shrinking
- Graphing using Translations
- Intersection of Sets
- Function Combinations
- Function Composition
- One to One Functions
- Inverse Functions

The graph of a function *f* is the graph of the equation y = f(x). A function is called **continuous** if its graph has no breaks or holes.

Table of Contents

Functions Table of Contents Functions Vertical Line Test Power Functions **Reciprocal Functions** Root Functions Symmetry Even & Odd Functions Transformation Vertical Shift Horizontal Shift **Combining Horizontal and Vertical Shifts** Reflection Vertical Stretching and Shrinking Combining Shifting, Stretching and Reflecting Horizontal Stretching and Shrinking **Graphing using Translations** Intersection of Sets **Function Combinations Function Composition** One to One Functions Inverse Functions

Tim Busken

Functions

Table of Contents

Vertical Line Test Power Functions Reciprocal Functions Reciprocal Functions Symmetry Even & Odd Functio Transformation Vertical Shift Horizontal Shift Reflection Vertical Stretching an Shrinking Combining Shifting, Stretching and

Horizontal Stretching and Shrinking

Graphing using Translations

Intersection of Sets

Function Combinations

Function Composition

One to One Functions

Inverse Functions

We can read the value of f(x) from the graph as being the height of the graph above a point *x*.

Tim Busken

Functions

Table of Contents

We can read the value of f(x) from the graph as being the height of the graph above a point *x*.

Tim Busken

of Content

Functions

Functions
Vertical Line Test
Power Functions
Reciprocal Functions
Root Functions
Symmetry
Even & Odd Functions
Transformation
Vertical Shift
Horizontal Shift
Combining Horizontal and Vertical Shifts
Reflection
Vertical Stretching and Shrinking
Combining Shifting, Stretching and Reflecting
Horizontal Stretching and Shrinking
Graphing using Translations
Intersection of Sets
Function Combinations
Function Composition
One to One Functions
Inverse Functions

We can read the value of f(x) from the graph as being the height of the graph above a point *x*.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Tim Busken

Functions Table of Content

Functions
Vertical Line Test
Power Functions
Reciprocal Functions
Root Functions
Symmetry
Even & Odd Functions
Transformation
Vertical Shift
Horizontal Shift
Combining Horizontal
and Vertical Shifts
Reflection
Vertical Stretching and Shrinking
Combining Shifting, Stretching and Reflecting
Horizontal Stretching and Shrinking
Graphing using Translations
Intersection of Sets
Function Combinations
Function Composition
One to One Functions
Inverse Functions

We can read the value of f(x) from the graph as being the height of the graph above a point *x*.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

Tim Busken

Functions Table of Content

Functions
Vertical Line Test
Power Functions
Reciprocal Functions
Root Functions
Symmetry
Even & Odd Functions
Transformation
Vertical Shift
Horizontal Shift
Combining Horizontal
and Vertical Shifts
Reflection
Vertical Stretching and Shrinking
Combining Shifting,
Reflecting
Horizontal Stretching
and Shrinking
Graphing using
Iranslations
Intersection of Sets
Function Combinations
Function Composition
One to One Functions
Inverse Functions

We can read the value of f(x) from the graph as being the height of the graph above a point *x*.

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

Tim Busken

Functions

Table of Contents

Functions

Vertical Line Test Power Functions Reciprocal Function

Root Function:

Symmetry

Even & Odd Functio

Transformation

Vertical Shift

Horizontal Shift

Combining Horizonta and Vertical Shifts Reflection

Vertical Stretching and Shrinking

Combining Shifting Stretching and Reflecting

Horizontal Stretching and Shrinking

Graphing using Translations

Intersection of Sets

Function Combinations

Function Composition

One to One Functions

Inverse Functions

Definition

A function is a special type of relation. A <u>FUNCTION</u> is a correspondence between a first set, called the *domain*, and a second set, called the *range*, such that each member of the domain corresponds to *exactly one* member of the range.

However, different elements of the domain are allowed to have a correspondence with the same value in the range.

DOMAIN RANGE	DOMAIN RANGE	Domain Range
11	11	0
24 39	1 57	

Figure : F is a FUNCTION (left), R is a relation but NOT A FUNCTION (center) & an example of a function (right) whose two different domain elements are associated with the same range element.

Tim Busken

Functions

Functions Vertical Line Test Power Functions Reciprocal Functior

Root Functions

Symmetry

Even & Odd Functions

Transformation

vertical Shift

Horizontal Shift

Combining Horizonta and Vertical Shifts

Vertical Stretching and Shrinking

Combining Shifting Stretching and Reflecting

Horizontal Stretching and Shrinking

Graphing using Translations

Intersection of Sets

Function Combination:

Function Composition

One to One Functions

Inverse Functions

Theorem (VERTICAL LINE TEST (VLT))

A curve in the coordinate plane is the graph of a function if and only if there is no vertical line that crosses the graph more than once.

Figure : GRAPHS OF $y = x^2$ and $x = y^2$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

Tim Busken

Functions

Table of Contents Functions

Vertical Line Test

- Power Functions
- Reciprocal Function
- Root Functions
- Symmetry
- Even & Odd Functions
- Transformation
- Vertical Shift
- Horizontal Shif
- Combining Horizontal and Vertical Shifts
- Reflection
- Vertical Stretching and Shrinking
- Combining Shifting Stretching and Reflecting
- Horizontal Stretching and Shrinking
- Graphing using Translations
- Intersection of Sets
- Function Combinations
- Function Composition
- One to One Functions
- Inverse Functions

Does the equation $x^2 + y^2 = 16$ define y as a function of x?

Tim Busken

Functions

Table of Contents Functions Vertical Line Test Power Functions Reciprocal Functions Root Functions Symmetry Even & Odd Function Transformation Vertical Shift Horizontal Shift Combining Horizontal Reflection Vertical Shifts Reflection Stretching and Reflecting

Horizontal Stretching and Shrinking

Graphing using Translations

Intersection of Sets

Function Combinations

Function Composition

One to One Functions

Inverse Functions

$p(x) = x^n$ is called a **power function**.

If *n* is even, the graph of $f(x) = x^n$ is similar to the parabola $y = x^2$. If *n* is odd, the graph of $f(x) = x^n$ is similar to the cubic $y = x^3$.

Tim Busken

Functions

Table of Contents Functions Vertical Line Test Power Functions Reciprocal Function

Root Functions

Symmetry

Even & Odd Functions

Transformation

Vertical Shift

Horizontal Shift

Combining Horizonta and Vertical Shifts

Vertical Stretching ar Shrinking

Combining Shiftin Stretching and Reflecting

Horizontal Stretching and Shrinking

Graphing using Translations

Intersection of Sets

Function Combination

Function Composition

One to One Functions

Inverse Functions

$p(x) = x^n$ is called a **power function**.

If *n* is even, the graph of $f(x) = x^n$ is similar to the parabola $y = x^2$. If *n* is odd, the graph of $f(x) = x^n$ is similar to the cubic $y = x^3$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへ(?)

Tim Busken

Functions

Table of Contents Functions Vertical Line Test Power Functions Reciprocal Function

Root Functions

Symmetry

Even & Odd Functions

Transformation

Vertical Shift

Combining Horizo

and Vertical Shifts Reflection

Vertical Stretching an Shrinking

Combining Shiftin Stretching and Reflecting

Horizontal Stretchin and Shrinking

Graphing using Translations

Intersection of Sets

Function Combination:

Function Composition

One to One Functions

Inverse Functions

$p(x) = x^n$ is called a **power function**.

If *n* is even, the graph of $f(x) = x^n$ is similar to the parabola $y = x^2$. If *n* is odd, the graph of $f(x) = x^n$ is similar to the cubic $y = x^3$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のへぐ

Tim Busken

Functions

Table of Contents Functions Vertical Line Test Power Functions Reciprocal Function

Root Functions

Symmetry

Even & Odd Functions

Transformation

Vertical Shift

Combining Horizonta

and Vertical Shifts Reflection

Vertical Stretching ar Shrinking

Combining Shiftin Stretching and Reflecting

Horizontal Stretching and Shrinking

Graphing using Translations

Intersection of Sets

Function Combination:

Function Composition

One to One Functions

Inverse Functions

$p(x) = x^n$ is called a **power function**.

If *n* is even, the graph of $f(x) = x^n$ is similar to the parabola $y = x^2$. If *n* is odd, the graph of $f(x) = x^n$ is similar to the cubic $y = x^3$.

|▲□▶ ▲御▶ ▲臣▶ ▲臣▶ | 臣|||の��

Tim Busken

Functions

Table of Contents Functions Vertical Line Test Power Functions Reciprocal Function

Root Functions

Symmetry

Even & Odd Functions

Transformation

Vertical Shift

Horizontal Shif

Combining Horizontal and Vertical Shifts

Vertical Stretching ar Shrinking

Combining Shiftin Stretching and Reflecting

Horizontal Stretching and Shrinking

Graphing using Translations

Intersection of Sets

Function Combination:

Function Composition

One to One Functions

Inverse Functions

$p(x) = x^n$ is called a **power function**.

If *n* is even, the graph of $f(x) = x^n$ is similar to the parabola $y = x^2$. If *n* is odd, the graph of $f(x) = x^n$ is similar to the cubic $y = x^3$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ つへ⊙

Tim Busken

Functions

Table of Contents Functions Vertical Line Test Power Functions Reciprocal Functions Symmetry

Even & Odd Function

Transformation

Vertical Shift

Combining Horizontal and Vertical Shifts

Reflection

Vertical Stretching an Shrinking

Combining Shiftin Stretching and Reflecting

Horizontal Stretching and Shrinking

Graphing using Translations

Intersection of Sets

Function Combinations

Function Composition

One to One Functions

Inverse Functions

$p(x) = x^n$ is called a **power function**.

If *n* is even, the graph of $f(x) = x^n$ is similar to the parabola $y = x^2$. If *n* is odd, the graph of $f(x) = x^n$ is similar to the cubic $y = x^3$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Tim Busken

Functions

Table of Contents Functions Vertical Line Test **Power Functions** Reciprocal Function Root Functions

Symmetry

Even & Odd Functions

Transformation

Vertical Shift

Combining Horizonta

and Vertical Shifts Reflection

Vertical Stretching an Shrinking

Combining Shiftin Stretching and Reflecting

Horizontal Stretching and Shrinking

Graphing using Translations

Intersection of Sets

Function Combinations

Function Composition

One to One Functions

Inverse Functions

$p(x) = x^n$ is called a **power function**.

If *n* is even, the graph of $f(x) = x^n$ is similar to the parabola $y = x^2$. If *n* is odd, the graph of $f(x) = x^n$ is similar to the cubic $y = x^3$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● 三 ・ の々で

Tim Busken

Functions

Table of Contents Functions Vertical Line Test Power Functions Reciprocal Function Root Functions

Symmetry

Even & Odd Functions

Transformation

Vertical Shift

Combining Horizonta

and Vertical Shifts Reflection

Vertical Stretching ar Shrinking

Combining Shiftin Stretching and Reflecting

Horizontal Stretching and Shrinking

Graphing using Translations

Intersection of Sets

Function Combinations

Function Composition

One to One Functions

Inverse Functions

$p(x) = x^n$ is called a **power function**.

If *n* is even, the graph of $f(x) = x^n$ is similar to the parabola $y = x^2$. If *n* is odd, the graph of $f(x) = x^n$ is similar to the cubic $y = x^3$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへぐ

Tim Busken

Functions

Table of Contents Functions Vertical Line Test Power Functions Reciprocal Function Root Functions

Symmetry

Even & Odd Functions

Transformation

Vertical Shift

Combining Horizonta

and Vertical Shifts Reflection

Vertical Stretching ar Shrinking

Combining Shiftin Stretching and Reflecting

Horizontal Stretching and Shrinking

Graphing using Translations

Intersection of Sets

Function Combinations

Function Composition

One to One Functions

Inverse Functions

$p(x) = x^n$ is called a **power function**.

If *n* is even, the graph of $f(x) = x^n$ is similar to the parabola $y = x^2$. If *n* is odd, the graph of $f(x) = x^n$ is similar to the cubic $y = x^3$.

Tim Busken

Functions

Table of Content:

Functions

Vertical Line Test

Power Functions

Reciprocal Functions

Root Function

Symmetry

Even & Odd Functions

Transformation

Vertical Shift

Horizontal Shif

Combining Horizontal and Vertical Shifts

Reflection

Vertical Stretching and Shrinking

Combining Shifting Stretching and Reflecting

Horizontal Stretching and Shrinking

Graphing using Translations

Intersection of Sets

Function Combinations

Function Composition

One to One Functions

Inverse Functions

$f(x) = \frac{1}{x^n}$ is called a **reciprocal function**.

Tim Busken

Functions

- Table of Content:
- Functions
- Vertical Line Tes
- Power Functions

Reciprocal Functions

- Root Functions
- Symmetry
- Even & Odd Functions
- Transformation
- Vertical Shift
- Horizontal Shift
- Combining Horizontal and Vertical Shifts
- Reflection
- Vertical Stretching a Shrinking
- Combining Shiftin Stretching and Reflecting
- Horizontal Stretching and Shrinking
- Graphing using Translations
- Intersection of Sets
- Function Combinations
- Function Composition
- One to One Functions
- Inverse Functions

$f(x) = \frac{1}{x^n}$ is called a **reciprocal function**.

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Tim Busken

Functions

Table of Contents

Functions

Vertical Line Tes

Power Functions

Reciprocal Functions

Root Functions

Symmetry

Even & Odd Function:

Transformation

Vertical Shift

Horizontal Shif

Combining Horizontal and Vertical Shifts

Reflection

Vertical Stretching a Shrinking

Combining Shiftin Stretching and Reflecting

Horizontal Stretching and Shrinking

Graphing using Translations

Intersection of Sets

Function Combination:

Function Composition

One to One Functions

Inverse Functions

$f(x) = \frac{1}{x^n}$ is called a **reciprocal function**.

・ロト・個ト・モト・モー のへで

Tim Busken

Functions

- Table of Contents
- Functions
- Vertical Line Tes
- Power Functions

Reciprocal Functions

- Root Functions
- Symmetry
- Even & Odd Functions
- Transformation
- Vertical Shift
- Horizontal Shif
- Combining Horizontal and Vertical Shifts
- Reflection
- Vertical Stretching a Shrinking
- Combining Shiftin Stretching and Reflecting
- Horizontal Stretching and Shrinking
- Graphing using Translations
- Intersection of Sets
- Function Combination:
- Function Composition
- One to One Functions
- Inverse Functions

$f(x) = \frac{1}{x^n}$ is called a **reciprocal function**.

Tim Busken

Functions

- Table of Contents
- Functions
- Vertical Line Tes
- Power Functions

Reciprocal Functions

- Root Functions
- Symmetry
- Even & Odd Functions
- Transformation
- Vertical Shift
- Horizontal Shif
- Combining Horizontal and Vertical Shifts
- Reflection
- Vertical Stretching a Shrinking
- Combining Shiftin Stretching and Reflecting
- Horizontal Stretching and Shrinking
- Graphing using Translations
- Intersection of Sets
- Function Combinations
- Function Composition
- One to One Functions
- Inverse Functions

$f(x) = \frac{1}{x^n}$ is called a **reciprocal function**.

Tim Busken

Functions

- Table of Contents
- Vertical Line Tes
- Power Functions

Reciprocal Functions

- Root Functions
- Symmetry
- Even & Odd Functions
- Transformation
- Vertical Shift
- Horizontal Shif
- Combining Horizontal and Vertical Shifts
- Reflection
- Vertical Stretching as Shrinking
- Combining Shiftin Stretching and Reflecting
- Horizontal Stretching and Shrinking
- Graphing using Translations
- Intersection of Sets
- Function Combination
- Function Composition
- One to One Functions
- Inverse Functions

$f(x) = \frac{1}{x^n}$ is called a **reciprocal function**.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Tim Busken

Functions

- Table of Contents
- Vertical Line Test
- Power Functions

Reciprocal Functions

- Root Functions
- Symmetry
- Even & Odd Functions
- Transformation
- Vertical Shift
- Horizontal Shif
- Combining Horizontal and Vertical Shifts
- Reflection
- Vertical Stretching as Shrinking
- Combining Shiftin Stretching and Reflecting
- Horizontal Stretching and Shrinking
- Graphing using Translations
- Intersection of Sets
- Function Combination
- Function Composition
- One to One Functions
- Inverse Functions

$f(x) = \frac{1}{x^n}$ is called a **reciprocal function**.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Tim Busken

Functions

- Table of Contents
- Vertical Line Tes
- Power Functions

Reciprocal Functions

- Root Functions
- Symmetry
- Even & Odd Functions
- Transformation
- Vertical Shift
- Horizontal Shift
- Combining Horizontal and Vertical Shifts
- Reflection
- Vertical Stretching as Shrinking
- Combining Shiftin Stretching and Reflecting
- Horizontal Stretching and Shrinking
- Graphing using Translations
- Intersection of Sets
- Function Combination:
- Function Composition
- One to One Functions
- Inverse Functions

$f(x) = \frac{1}{x^n}$ is called a **reciprocal function**.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Tim Busken

Functions

- Table of Contents
- Vertical Line Test
- Power Functions

Reciprocal Functions

- Root Functions
- Symmetry
- Even & Odd Functions
- Transformation
- Vertical Shift
- Horizontal Shif
- Combining Horizontal and Vertical Shifts
- Reflection
- Shrinking
- Combining Shiftin Stretching and Reflecting
- Horizontal Stretching and Shrinking
- Graphing using Translations
- Intersection of Sets
- Function Combination
- Function Composition
- One to One Functions
- Inverse Functions

$f(x) = \frac{1}{x^n}$ is called a **reciprocal function**.

Tim Busken

Functions

- Table of Contents Functions Vertical Line Test Power Functions
- Reciprocal Functions

Root Functions

- Symmetry
- Even & Odd Functions
- Transformation
- Vertical Shift
- Horizontal Shi
- Combining Horizontal and Vertical Shifts
- Reflection
- Vertical Stretching and Shrinking
- Combining Shifting Stretching and Reflecting
- Horizontal Stretching and Shrinking
- Graphing using Translations
- Intersection of Sets
- Function Combinations
- Function Composition
- One to One Functions
- Inverse Functions

$f(x) = \sqrt[n]{x}$ is called a **root function**.

Tim Busken

Functions

Table of Contents Functions Vertical Line Test Power Functions Reciprocal Functi

Root Functions

- Symmetry
- Even & Odd Functions
- Transformation
- Vertical Shift
- Horizontal Shif
- Combining Horizontal and Vertical Shifts
- Reflection
- Vertical Stretching and Shrinking
- Combining Shiftin Stretching and Reflecting
- Horizontal Stretching and Shrinking
- Graphing using Translations
- Intersection of Sets
- Function Combination:
- Function Composition
- One to One Functions
- Inverse Functions

$f(x) = \sqrt[n]{x}$ is called a **root function**.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Tim Busken

Functions

Table of Contents Functions Vertical Line Test Power Functions Reciprocal Functi

Root Functions

- Symmetry
- Even & Odd Functions
- Transformation
- Vertical Shift
- Horizontal Shif
- Combining Horizontal and Vertical Shifts
- Reflection
- Vertical Stretching and Shrinking
- Combining Shiftin Stretching and Reflecting
- Horizontal Stretching and Shrinking
- Graphing using Translations
- Intersection of Sets
- Function Combination:
- Function Composition
- One to One Functions
- Inverse Functions

$f(x) = \sqrt[n]{x}$ is called a **root function**.

▲□▶▲御▶★≣▶★≣▶ = ● のへで

Tim Busken

Functions

Table of Contents Functions Vertical Line Test Power Functions Reciprocal Functi

Root Functions

- Symmetry
- Even & Odd Functions
- Transformation
- Vertical Shift
- Horizontal Shif
- Combining Horizontal and Vertical Shifts
- Reflection
- Vertical Stretching and Shrinking
- Combining Shiftin Stretching and Reflecting
- Horizontal Stretching and Shrinking
- Graphing using Translations
- Intersection of Sets
- Function Combination
- Function Composition
- One to One Functions
- Inverse Functions

$f(x) = \sqrt[n]{x}$ is called a **root function**.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Tim Busken

Functions

Table of Contents Functions Vertical Line Test Power Functions Reciprocal Functi

Root Functions

- Symmetry
- Even & Odd Functions
- Transformation
- Vertical Shift
- Horizontal Shif
- Combining Horizontal and Vertical Shifts
- Reflection
- Vertical Stretching and Shrinking
- Combining Shiftin Stretching and Reflecting
- Horizontal Stretching and Shrinking
- Graphing using Translations
- Intersection of Sets
- Function Combination:
- Function Composition
- One to One Functions
- Inverse Functions

$f(x) = \sqrt[n]{x}$ is called a **root function**.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Tim Busken

Functions

Table of Contents Functions Vertical Line Test Power Functions Reciprocal Function

Root Functions

Symmetry

Even & Odd Function

Transformation

Vertical Shift

Horizontal Shift

Combining Horizontal and Vertical Shifts

Vertical Stretching and Shrinking

Combining Shiftin Stretching and Reflecting

Horizontal Stretching and Shrinking

Graphing using Translations

Intersection of Sets

Function Combination:

Function Composition

One to One Functions

Inverse Functions

$f(x) = \sqrt[n]{x}$ is called a **root function**.

Tim Busken

Functions

Table of Contents Functions Vertical Line Test Power Functions Reciprocal Function

Root Functions

Symmetry

Even & Odd Function

Transformation

Vertical Shift

Horizontal Shift

Combining Horizontal and Vertical Shifts

Vertical Stretching and Shrinking

Combining Shiftin Stretching and Reflecting

Horizontal Stretching and Shrinking

Graphing using Translations

Intersection of Sets

Function Combination

Function Composition

One to One Functions

Inverse Functions

$f(x) = \sqrt[n]{x}$ is called a **root function**.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで
Tim Busken

Functions

Table of Contents Functions Vertical Line Test Power Functions Reciprocal Function

Root Functions

Symmetry

Even & Odd Function

Transformation

Vertical Shift

Horizontal Shift

Combining Horizontal and Vertical Shifts

Vertical Stretching and Shrinking

Combining Shiftin Stretching and Reflecting

Horizontal Stretching and Shrinking

Graphing using Translations

Intersection of Sets

Function Combination:

Function Composition

One to One Functions

Inverse Functions

$f(x) = \sqrt[n]{x}$ is called a **root function**.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Tim Busken

Functions

Table of Contents Functions Vertical Line Test Power Functions Reciprocal Function

Root Functions

Symmetry

Even & Odd Function

Transformation

Vertical Shift

Horizontal Shift

Combining Horizontal and Vertical Shifts

Vertical Stretching and Shrinking

Combining Shiftin Stretching and Reflecting

Horizontal Stretching and Shrinking

Graphing using Translations

Intersection of Sets

Function Combination

Function Composition

One to One Functions

Inverse Functions

$f(x) = \sqrt[n]{x}$ is called a **root function**.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Tim Busken

Functions

Table of Contents Functions Vertical Line Test Power Functions Reciprocal Functions

Symmetry

Even & Odd Functions Transformation Vertical Shift

Horizontal Shif

Combining Horizontal and Vertical Shifts

Reflection

Vertical Stretching an Shrinking

Combining Shifting Stretching and Reflecting

Horizontal Stretching and Shrinking

Graphing using Translations

Intersection of Sets

Function Combinations

Function Composition

One to One Functions

Inverse Functions

The graph of a function has origin symmetry when for any point (x,y) on the graph, there is also a point (-x,-y) on the graph.

Tim Busken

Functions

Table of Contents Symmetry

Function Combinations

Function Composition

One to One Functions

Inverse Functions

The graph of a function has y-axis symmetry if for every point (x,y), there is also a point (-x,y) on the graph.

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - のへで

Tim Busken

Functions

Table of Contents Functions Vertical Line Test Power Functions Reciprocal Function Root Functions

Symmetry

- Even & Odd Functions Transformation Vertical Shift Horizontal Shift Combining Horizontal and Vertical Shifts Reflection
- Vertical Stretching and Shrinking
- Combining Shifting Stretching and Reflecting
- Horizontal Stretching and Shrinking
- Graphing using Translations
- Intersection of Sets
- Function Combinations
- Function Composition
- One to One Functions
- Inverse Functions

Definition

The graph of a relation has x-axis symmetry if for every point (x, y) on the graph, the point (x, -y) is also on the graph.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Can a function have x-axis symmetry?

Tim Busken

Functions

- Table of Content: Functions
- Vertical Line Tes
- Power Functions
- Reciprocal Fund
- Root Functions
- Even & Odd Functions
- Transformation
- Vertical Chift
- Horizontal Shi
- Combining Horizontal and Vertical Shifts
- Reflection
- Vertical Stretching and Shrinking
- Combining Shifting Stretching and Reflecting
- Horizontal Stretching and Shrinking
- Graphing using Translations
- Intersection of Sets
- Function Combinations
- Function Composition
- One to One Functions
- Inverse Functions

Definition

- A function f(x) can be classified as (one of the following):
 - Even
 - Odd
 - 3 Neither Even Nor Odd

Figure : A function that is neither: $f(x) = x(x-2)^2$

Tim Busken

Functions

- Table of Conten Functions Vertical Line Te
- De la rest Esta d'an
- Recipiocari uncuc
- -
- Symmetry

Even & Odd Functions

- Transformation
- Vertical Shift
- Horizontal Shift
- Combining Horizontal and Vertical Shifts
- Vertical Stretchir
- Vertical Stretching an Shrinking
- Combining Shifting Stretching and Reflecting
- Horizontal Stretching and Shrinking
- Graphing using Translations
- Intersection of Sets
- Function Combinations
- Function Composition
- One to One Functions
- Inverse Functions

How to Test for Symmetry

- A function is <u>EVEN</u> if its graph has *y*-axis symmetry. If substitution of -x for *x* leads to the same equation, i.e., If f(-x) = f(x), then *f* is an even function.
- A function is <u>ODD</u> if its graph has origin symmetry. If substitution of -x for x leads to the negative version of f, i.e.,

If f(-x) = -f(x), then *f* is an odd function.

Tim Busken

Functions

Table of Contents Functions Vertical Line Test Power Functions Reciprocal Functions Root Functions

Even & Odd Function

Transformation

Vertical Shift

Horizontal Shift

Combining Horizontal and Vertical Shifts

Maria - L Oraca -

Shrinking

Combining Shifting Stretching and Reflecting

Horizontal Stretching and Shrinking

Graphing using Translations

Intersection of Sets

Function Combinations

Function Composition

One to One Functions

Inverse Functions

If a, b, c, and d are real numbers with $a \neq 0$, then $y = a \cdot f(bx - c) + d$ is called a **linear** transformation of the function y = f(x).

Tim Busken

Functions

Functions Vertical Line Test Power Functions Reciprocal Functions Root Functions Symmetry Even & Odd Functions

Transformation

Vertical Shift

Horizontal Shift Combining Horizonta and Vertical Shifts Reflection

Vertical Stretching an Shrinking

Combining Shifting Stretching and Reflecting

Horizontal Stretching and Shrinking

Graphing using Translations

Intersection of Sets

Function Combinations

Function Composition

One to One Functions

Inverse Functions

Vertical Shifts of Graphs

Suppose d > 0. The graph of y = f(x) + d is the graph of y = f(x) shifted vertically *upward* d units.

The graphs of $f(x) = x(x-2)^2$ and f(x) + d (left); and the graphs of $f(x) = x^2$ and $g(x) = x^2 + 2$ (right).

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

Tim Busken

Functions

Functions Vertical Line Test Power Functions Reciprocal Functions Root Functions Symmetry Even & Odd Functions

Transformation

Vertical Shift

Horizontal Shift Combining Horizontal and Vertical Shifts Reflection

Vertical Stretching an Shrinking

Combining Shiftin Stretching and Reflecting

Horizontal Stretching and Shrinking

Graphing using Translations

Intersection of Sets

Function Combinations

Function Composition

One to One Functions

Inverse Functions

Vertical Shifts of Graphs

Suppose d > 0. The graph of y = f(x) - d is the graph of y = f(x) shifted vertically *downward* d units.

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

Tim Busken

Functions

Table of Contents Functions Vertical Line Test Power Functions Reciprocal Function Root Functions Symmetry Even & Odd Functio Transformation Vertical Shift

Horizontal Shift

Combining Horizont and Vertical Shifts Reflection

Vertical Stretching and Shrinking

Combining Shifting Stretching and Reflecting

Horizontal Stretching and Shrinking

Graphing using Translations

Intersection of Sets

Function Combinations

Function Composition

One to One Functions

Inverse Functions

Horizontal Shifts of Graphs

Let c > 0. The graph of y = f(x + c) is the graph of y = f(x) shifted to the *left* c units.

The graphs of $f(x) = x(x-2)^2$ and f(x+c) are given in the left panel; and the graphs of $f(x) = x^2$ and $g(x) = (x+2)^2$ are presented in the right panel above.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Tim Busken

Functions

Functions Vertical Line Test Power Functions Reciprocal Functions Root Functions Symmetry Even & Odd Functior

Iransformation

Vertical Shift

Horizontal Shift

Combining Horizonta and Vertical Shifts Reflection

Vertical Stretching an Shrinking

Combining Shiftin Stretching and Reflecting

Horizontal Stretching and Shrinking

Graphing using Translations

Intersection of Sets

Function Combinations

Function Composition

One to One Functions

Inverse Functions

Horizontal Shifts of Graphs

Let c > 0. The graph of y = f(x - c) is the graph of y = f(x) shifted to the *right* c units.

Tim Busken

Functions

Table of Contents Functions Vertical Line Test Power Functions Reciprocal Funct Root Functions Symmetry Even & Odd Func Transformation Vertical Shift

Combining Horizontal and Vertical Shifts

Reflection

Vertical Stretching and Shrinking

Combining Shiftin Stretching and Reflecting

Horizontal Stretching and Shrinking

Graphing using Translations

Intersection of Sets

Function Combinations

Function Composition

One to One Functions

Inverse Functions

Combining Horizontal and Vertical Shifts

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 の々で

Tim Busken

Functions

Functions Vertical Line Test Power Functions Reciprocal Functions Root Functions

Symmetry

Even & Odd Functio

Transformation

11-----

Combining Horizontal and Vertical Shifts

Reflection

Vertical Stretching and Shrinking

Combining Shiftin Stretching and Reflecting

Horizontal Stretching and Shrinking

Graphing using Translations

Intersection of Sets

Function Combinations

Function Composition

One to One Functions

Inverse Functions

Combining Horizontal and Vertical Shifts

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Tim Busken

Functions

- Functions Vertical Line Test Power Functions Reciprocal Function Root Functions
- Symmetry
- Even & Odd Functio
- Transformation
- vertical Shin
- Combining Horizontal

and Vertical Shifts

- Reflection
- Vertical Stretching and Shrinking
- Combining Shiftin Stretching and Reflecting
- Horizontal Stretching and Shrinking
- Graphing using Translations
- Intersection of Sets
- Function Combinations
- Function Composition
- One to One Functions
- Inverse Functions

Combining Horizontal and Vertical Shifts

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

Tim Busken

Functions

- Functions Vertical Line Test Power Functions Reciprocal Functions
- Even & Odd Functio
- Transformation
- Vertical Shift
- Horizontal Shift

Combining Horizontal and Vertical Shifts

- Reflection
- Vertical Stretching and Shrinking
- Combining Shifting Stretching and Reflecting
- Horizontal Stretching and Shrinking
- Graphing using Translations
- Intersection of Sets
- Function Combinations
- Function Composition
- One to One Functions
- Inverse Functions

Combining Horizontal and Vertical Shifts

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 ○のへで

Tim Busken

Functions

- Functions Vertical Line Test Power Functions Reciprocal Functions Root Functions Symmetry Even & Odd Functions Transformation Vertical Shift Horizontal Shift
- Combining Horizontal and Vertical Shifts

Reflection

Vertical Stretching and Shrinking

Combining Shifting Stretching and Reflecting

Horizontal Stretching and Shrinking

Graphing using Translations

Intersection of Sets

Function Combinations

Function Composition

One to One Functions

Inverse Functions

To graph y = -f(x) reflect the graph of f(x) about the *x*-axis.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Tim Busken

Functions

- Functions Vertical Line Test Power Functions Reciprocal Functions Root Functions Symmetry Even & Odd Functions Transformation Vertical Shift Horizontal Shift Combinine Horizontal
- and Vertical Shifts

Reflection

- Vertical Stretching and Shrinking
- Combining Shifting Stretching and Reflecting
- Horizontal Stretching and Shrinking
- Graphing using Translations
- Intersection of Sets
- Function Combinations
- Function Composition
- One to One Functions
- Inverse Functions

To graph y = f(-x) **reflect** the graph of f(x) about the *y*-axis.

Tim Busken

Functions

Table of Contents Functions Vertical Line Test Power Functions Reciprocal Function Root Functions Symmetry Even & Odd Functio Transformation Vertical Shift Horizontal Shift Combining Horizont and Vertical Shifts

Vertical Stretching and Shrinking

Combining Shifti Stretching and Reflecting

Horizontal Stretching and Shrinking

Graphing using Translations

Intersection of Set:

Function Combinations

Function Composition

One to One Functions

Inverse Functions

Vertical Stretching and Shrinking

Graphing $y = a \cdot f(x)$

If a > 1, stretch the graph of y = f(x) vertically by a factor of a.

Tim Busken

Functions

Table of Contents Functions Vertical Line Test Power Functions Reciprocal Functions Root Functions Symmetry Even & Odd Function Transformation Vertical Shift Horizontal Shift Combining Horizontal Shift

Reflection

Vertical Stretching and Shrinking

Combining Shifti Stretching and Reflecting

Horizontal Stretching and Shrinking

Graphing using Translations

Intersection of Set:

Function Combinations

Function Composition

One to One Functions

Inverse Functions

Vertical Stretching and Shrinking

Graphing $y = a \cdot f(x)$

If a > 1, stretch the graph of y = f(x) vertically by a factor of a.

If 0 < a < 1, shrink the graph of y = f(x) vertically by a factor of a.

Tim Busken

Functions

- Functions Vertical Line Test Power Functions Reciprocal Functions Root Functions Symmetry Even & Odd Function Transformation Vertical Shift Horizontal Shift
- Combining Horizontal and Vertical Shifts
- Reflection

Vertical Stretching and Shrinking

- Combining Shiftin Stretching and Reflecting
- Horizontal Stretching and Shrinking
- Graphing using Translations
- Intersection of Sets
- Function Combinations
- Function Composition
- One to One Functions
- Inverse Functions

Example: $f(x) = a \cdot x^2$

- If a > 1, stretch the graph of y = f(x) vertically by a factor of a.
- If 0 < a < 1, shrink the graph of y = f(x) vertically by a factor of a.

Tim Busken

Functions

- Functions Vertical Line Test Power Functions Reciprocal Functions Root Functions Symmetry Even & Odd Function Transformation Vertical Shift Horizontal Shift Combining Horizonta
- and Vertical Shifts

Vertical Stretching and Shrinking

- Combining Shiftin Stretching and Reflecting
- Horizontal Stretching and Shrinking
- Graphing using Translations
- Intersection of Sets
- Function Combinations
- Function Composition
- One to One Functions
- Inverse Functions

Example: $f(x) = a \cdot x^2$

- If a > 1, stretch the graph of y = f(x) vertically by a factor of a.
- If 0 < a < 1, shrink the graph of y = f(x) vertically by a factor of a.

Tim Busken

Functions

- Functions Vertical Line Test Power Functions Reciprocal Functions Root Functions Symmetry
- Even & Odd Functions
- Transformation
- Vertical Shift
- Horizontal Shi
- Combining Horizontal and Vertical Shifts
- Reflection

Vertical Stretching and Shrinking

- Combining Shiftin Stretching and Reflecting
- Horizontal Stretching and Shrinking
- Graphing using Translations
- Intersection of Sets
- Function Combinations
- Function Composition
- One to One Functions
- Inverse Functions

Reflection and Vertical Shrinking & Stretching $y = x^2$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 → ⊙ < ⊙

Tim Busken

Functions

Functions Vertical Line Test Power Functions Reciprocal Functions Root Functions Symmetry Even & Odd Function Transformation Vertical Shift Horizontal Shift Horizontal Shift Combining Horizonta and Vertical Shifts Reflection

Shrinking

Combining Shifting, Stretching and Reflecting

Horizontal Stretching and Shrinking

Graphing using Translations

Intersection of Sets

Function Combination:

Function Composition

One to One Functions

Inverse Functions

Combining Shifting, Stretching and Reflecting

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 ○のへで

Tim Busken

Functions

Functions Vertical Line Test Power Functions Reciprocal Functio Root Functions Symmetry Even & Odd Functi

Transformation

Vertical Shift

Combining Horizonta and Vertical Shifts

Reflection

Vertical Stretching and Shrinking

Combining Shifting, Stretching and Reflecting

Horizontal Stretching and Shrinking

Graphing using Translations

Intersection of Sets

Function Combinations

Function Composition

One to One Functions

Inverse Functions

Combining Shifting, Stretching and Reflecting

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Tim Busken

Functions

- Functions Vertical Line Test Power Functions Reciprocal Functio Root Functions Symmetry
- Transformation
- Vertical Shift
- Horizontal Shift
- Combining Horizonta and Vertical Shifts
- Vertical Stretching and Shrinking
- Combining Shifting, Stretching and Reflecting
- Horizontal Stretching and Shrinking
- Graphing using Translations
- Intersection of Sets
- Function Combinations
- Function Composition
- One to One Functions
- Inverse Functions

Combining Shifting, Stretching and Reflecting

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

Tim Busken

Functions

Vertical Line Test Power Functions Reciprocal Functions Root Functions Symmetry Even & Odd Function Transformation Vertical Shift Horizontal Shift

and Vertical Shifts Reflection

Vertical Stretching an Shrinking

Combining Shifting, Stretching and Reflecting

Horizontal Stretching and Shrinking

Graphing using Translations

Intersection of Sets

Function Combinations

Function Composition

One to One Functions

Inverse Functions

Combining Shifting, Stretching and Reflecting

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Tim Busken

Functions

Vertical Line Test Power Functions Reciprocal Functions Root Functions Symmetry Even & Odd Function Transformation Vertical Shift Horizontal Shift Combining Horizontal and Vertical Shifts

Vertical Stretching and Shrinking

Combining Shifting, Stretching and Reflecting

Horizontal Stretching and Shrinking

Graphing using Translations

Intersection of Sets

Function Combinations

Function Composition

One to One Functions

Inverse Functions

Combining Shifting, Stretching and Reflecting

・ロト・西ト・ヨト ・ヨー シック・

Tim Busken

Functions

Table of Contents Functions Vertical Line Test Power Functions Reciprocal Function Root Functions Symmetry Even & Odd Function Vertical Shift Horizontal Shift Combining Horizon and Vertical Shift

Reflection

Vertical Stretching an Shrinking

Combining Shifti Stretching and Reflecting

Horizontal Stretching and Shrinking

Graphing using Translations

Intersection of Sets

Function Combinations

Function Composition

One to One Functions

Inverse Functions

Horizontal Stretching and Shrinking

Graphing $y = f(b \cdot x)$

If b > 1, shrink the graph of y = f(x) horizontally by a factor of 1/b.

Tim Busken

Functions

Table of Contents Functions Vertical Line Test Power Functions Reciprocal Function Root Functions Symmetry Even & Odd Functi Transformation Vertical Shift

Horizontal Shif

Combining Horizontal and Vertical Shifts

Vertical Stretching an Shrinking

Combining Shiftir Stretching and Reflecting

Horizontal Stretching and Shrinking

Graphing using Translations

Intersection of Sets

Function Combinations

Function Composition

One to One Functions

Inverse Functions

Horizontal Stretching and Shrinking

Graphing $y = f(b \cdot x)$

If b > 1, shrink the graph of y = f(x) horizontally by a factor of 1/b.

If 0 < b < 1, stretch the graph of y = f(x) horizontally by a factor of 1/b.

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

Tim Busken

Functions

- Table of Contents Functions Vertical Line Test Power Functions Reciprocal Function: Root Functions Symmetry Even & Odd Function Transformation Vertical Shift Combining Horizonta and Vertical Shift
- Reliection
- Shrinking
- Combining Shiftin Stretching and Reflecting

Horizontal Stretching and Shrinking

Graphing using Translations

Intersection of Sets

Function Combinations

Function Composition

One to One Functions

Inverse Functions

If *a*, *b*, *c*, and *d* are real numbers with $a \neq 0$, then $y = a \cdot f(bx - c) + d$ is called a **linear transformation** of y = f(x).

All of the transformations of a function **form a family of functions**. For example, $y = -3\sqrt[3]{x-1} + 1$ (graph below) is in the cube root family of functions.

Tim Busken

Functions

- Functions Vertical Line Test Power Functions Reciprocal Functions Root Functions Symmetry
- Transformation
- indition
- vertical offic
- Combining Horizontal and Vertical Shifts
- Reflection
- Vertical Stretching an Shrinking
- Combining Shifting Stretching and Reflecting
- Horizontal Stretching and Shrinking

Graphing using Translations

- Intersection of Sets
- Function Combinations
- Function Composition
- One to One Functions
- Inverse Functions

Linear Transformation

$$y = \mathbf{a} \cdot f(\mathbf{b}x - \mathbf{c}) + \mathbf{d}$$

- a represents the reflection and vertical shrinking or stretching of *f*.
- *b* represents the horizontal shrinking or stretching of *f*.
- c represents the horizontal translation of f.
- *d* represents the vertical translation of *f*.

Tim Busken

Functions

- Table of Conte Functions
- Vertical Line Test
- Power Functions
- Reciprocal Function
- Root Functions
- Symmetry
- Even & Odd Function
- Transformation
- Vertical Shift
- Horizontal Shift
- Combining Horizontal and Vertical Shifts
- Vertical Stretching an Shrinking
- Combining Shifting Stretching and Reflecting
- Horizontal Stretching and Shrinking

Graphing using Translations

- Intersection of Sets
- Function Combinations
- Function Composition
- One to One Functions
- Inverse Functions

Graphing using Translations

$$y = \mathbf{a} \cdot f(\mathbf{b}x - \mathbf{c}) + \mathbf{d}$$

- 1.) Identify and graph f(x). Use symmetry, if possible.
- 2.) Horizontal Shift
- 3.) Reflection and horizontal and/or vertical shrinking or stretching
- 4.) Vertical Shift

Tim Busken

Functions

- Functions Vertical Line Test Power Functions Reciprocal Functions Root Functions Symmetry Even & Odd Functions
- Transformation
- Vertical Shift
- Combining Horizontal
- and Vertical Shifts
- Vertical Stretching and Shrinking
- Combining Shifting Stretching and Reflecting
- Horizontal Stretching and Shrinking

Graphing using Translations

- Intersection of Sets
- Function Combinations
- Function Composition
- One to One Functions
- Inverse Functions

Graph $y = -3 \cdot \sqrt[3]{x-1} + 1$

Tim Busken

Functions

Table of Contents Functions Vertical Line Test Power Functions Reciprocal Functions Root Functions Symmetry

Even & Odd Functions

Transformation

Vertical Shift

Horizontal Shif

Combining Horizontal and Vertical Shifts

Vertical Stretching and Shrinking

Combining Shifting Stretching and Reflecting

Horizontal Stretching and Shrinking

Graphing using Translations

Intersection of Sets

Function Combinations

Function Composition

One to One Functions

Inverse Functions

1.) $f(x) = \sqrt[3]{x}$

x	$f(x) = \sqrt[3]{x}$
-8	-2
-1	-1
0	0
1	1
8	2

Tim Busken

Functions

- Table of Contents Functions Vertical Line Test Power Functions Reciprocal Functions Root Functions Symmetry
- Even & Odd Functions
- Transformation
- Vertical Shift
- Horizontal Shift
- Combining Horizonta and Vertical Shifts
- Vertical Stretching and Shrinking
- Combining Shifting Stretching and Reflecting
- Horizontal Stretching and Shrinking

Graphing using Translations

- Intersection of Sets
- Function Combinations
- Function Composition
- One to One Functions
- Inverse Functions

1.) $f(x) = \sqrt[3]{x}$

2.) Horizontal Shift

Tim Busken

Functions

- Functions Vertical Line Test Power Functions Reciprocal Function Root Functions
- Symmetry
- Even & Odd Functions
- Transformation
- Vertical Shift
- Horizontal Shif
- Combining Horizonta and Vertical Shifts
- Reflection
- Vertical Stretching a Shrinking
- Combining Shifting Stretching and Reflecting
- Horizontal Stretching and Shrinking

Graphing using Translations

- Intersection of Sets
- Function Combinations
- Function Composition
- One to One Functions
- Inverse Functions

- 1.) $f(x) = \sqrt[3]{x}$
- 2.) Horizontal Shift
- 3.) Reflection and Vertical Stretching

x	$y = \sqrt[3]{x-1}$	$y = -3\sqrt[3]{x-1}$
-7	-2	6
0	-1	3
1	0	0
2	1	-3
9	2	-6

Tim Busken

Functions

- Functions Vertical Line Test Power Functions Reciprocal Function Root Functions Symmetry Even & Odd Function
- Transformation
- Vertical Shift
- Horizontal Shift
- and Vertical Shifts Reflection
- Vertical Stretching an Shrinking
- Combining Shifting Stretching and Reflecting
- Horizontal Stretching and Shrinking

Graphing using Translations

Intersection of Sets

- Function Combinations
- Function Composition
- One to One Functions
- Inverse Functions

- 1.) $f(x) = \sqrt[3]{x}$
- 2.) Horizontal Shift
- 3.) Reflection and Vertical Stretching
- 4.) Vertical Shift

Tim Busken

Functions

- Functions Vertical Line Test Power Functions Reciprocal Functions Root Functions Symmetry Even & Odd Functio
- Transformation
- Vertical Shift
- Horizontal Shift
- Combining Horizonta and Vertical Shifts Reflection
- Vertical Stretching an Shrinking
- Combining Shifting Stretching and Reflecting
- Horizontal Stretching and Shrinking

Graphing using Translations

Intersection of Set

- Function Combination
- Function Composition
- One to One Functions
- Inverse Functions

- 1.) $f(x) = \sqrt[3]{x}$
- 2.) Horizontal Shift
- 3.) Reflection and Vertical Stretching
- 4.) Vertical Shift

 $y = -3 \cdot \sqrt[3]{x-1} + 1 = -3 \cdot f(x-1) + 1$

has the following characteristics:

- domain: $x \in (-\infty, \infty)$
- range: $y \in (-\infty, \infty)$
- g(x) is a decreasing function.
 g(x) ↓ for x ∈ (-∞, ∞)

Tim Busken

Functions

Table of Contents Functions Vertical Line Test Power Functions Reciprocal Functions Root Functions Symmetry Even & Odd Functions Transformation Vertical Shift Horizontal Shift Combining Horizontal and Vertical Shifts

Vertical Stretching and Shrinking

Combining Shifting Stretching and Reflecting

Horizontal Stretching and Shrinking

Graphing using Translations

Intersection of Sets

Function Combinations

Function Composition

One to One Functions

Inverse Functions

Set Intersection

The <u>intersection</u> of two sets A and B, written $A \cap B$, is the set of all elements (numbers) that are in both A and B. The \cap symbol means the word "and."

Example: Suppose A = $\{1, 2, 3, 4\}$ and B = $\{2, 4, 20\}$. Then A \cap B = $\{2, 4\}$

Tim Busken

Functions

Table of Contents Functions Vertical Line Test Power Functions Reciprocal Function Root Functions Symmetry Even & Odd Functio Transformation Vertical Shift

Combining Horizontal and Vertical Shifts

Vertical Stretching and Shrinking

Combining Shiftin Stretching and Reflecting

Horizontal Stretching and Shrinking

Graphing using Translations

Intersection of Sets

Function Combinations

Function Composition

One to One Functions

Inverse Functions

Set Intersection

The <u>intersection</u> of two sets A and B, written $A \cap B$, is the set of all elements (numbers) that are in both A and B. The \cap symbol means the word "and."

Example: Suppose A = $\{1, 2, 3, 4\}$ and B = $\{2, 4, 20\}$. Then A \cap B = $\{2, 4\}$

Example: A = $[0, \infty)$ and B = $(-\infty, \infty)$.

Tim Busken

Functions

Table of Contents Functions Vertical Line Test Power Functions Reciprocal Function Root Functions Symmetry Even & Odd Functio Transformation Vertical Shift Horizontal Shift

Combining Horizontal and Vertical Shifts Reflection

Vertical Stretching and Shrinking

Combining Shiftin Stretching and Reflecting

Horizontal Stretching and Shrinking

Graphing using Translations

Intersection of Sets

Function Combinations

Function Composition

One to One Functions

Inverse Functions

Set Intersection

The <u>intersection</u> of two sets A and B, written $A \cap B$, is the set of all elements (numbers) that are in both A and B. The \cap symbol means the word "and."

Example: Suppose A = $\{1, 2, 3, 4\}$ and B = $\{2, 4, 20\}$. Then A \cap B = $\{2, 4\}$

Example: A = $[0, \infty)$ and B = $(-\infty, \infty)$.

Tim Busken

Functions

Table of Contents Functions Vertical Line Test Power Functions Reciprocal Functions Root Functions Symmetry Even & Odd Functions Transformation Vertical Shift Horizontal Shift Comblining Horizontal

Vertical Stretching and Shrinking

Combining Shifting Stretching and Reflecting

Horizontal Stretching and Shrinking

Graphing using Translations

Intersection of Sets

Function Combinations

Function Composition One to One Functions

Algebra of Functions

Let *f* and *g* be functions with domains A and B. Then the functions f + g, f - g, fg, and f/g are defined as follows:

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

(f+g)(x)	= f(x) + g(x)	domain $A \cap B$
(f-g)(x)	= f(x) - g(x)	domain $A \cap B$
$(f \cdot g)(x)$	$= f(x) \cdot g(x)$	domain $A \cap B$
$\left(\frac{f}{g}\right)(x)$	$= \frac{f(x)}{g(x)}$	domain $\{x \in A \cap B \mid g(x) \neq 0\}$

Tim Busken

Functions

Table of Contents Functions Vertical Line Test Power Functions Reciprocal Functions Root Functions Symmetry Even & Odd Functions Transformation Vertical Shift Horizontal Shift Combining Horizontal

Vertical Stretching and Shrinking

Combining Shifting Stretching and Reflecting

Horizontal Stretching and Shrinking

Graphing using Translations

Intersection of Sets

Function Combinations

Function Composition One to One Functions

Algebra of Functions

Let *f* and *g* be functions with domains A and B. Then the functions f + g, f - g, fg, and f/g are defined as follows:

$\left(f+g ight) \left(x ight)$	= f(x) + g(x)	domain $A \cap B$
(f-g)(x)	= f(x) - g(x)	domain $A \cap B$
$(f \cdot g)(x)$	$= f(x) \cdot g(x)$	domain $A \cap B$
$\left(\frac{f}{g}\right)(x)$	$= \frac{f(x)}{g(x)}$	domain $\{x \in A \cap B \mid g(x) \neq 0\}$

Example: Suppose $f(x) = \sqrt{x}$, $g(x) = x^2$ and $h(x) = (f+g)(x) = \sqrt{x} + x^2$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Tim Busken

Functions

Table of Contents Functions Vertical Line Test Power Functions Reciprocal Functions Root Functions Symmetry Even & Odd Functions Transformation Vertical Shift Combining Horizontal Shift

Vertical Stretching an Shrinking

Combining Shifting Stretching and Reflecting

Horizontal Stretching and Shrinking

Graphing using Translations

Intersection of Sets

Function Combinations

Function Composition One to One Functions Inverse Functions

Algebra of Functions

Let *f* and *g* be functions with domains A and B. Then the functions f + g, f - g, fg, and f/g are defined as follows:

$\left(f+g ight)\left(x ight)$	= f(x) + g(x)	domain $A \cap B$
(f-g)(x)	= f(x) - g(x)	domain $A \cap B$
$(f \cdot g)(x)$	$= f(x) \cdot g(x)$	domain $A \cap B$
$\left(\frac{f}{g}\right)(x)$	$= \frac{f(x)}{g(x)}$	domain $\{x \in A \cap B \mid g(x) \neq 0\}$

Example: Suppose
$$f(x) = \sqrt{x}$$
, $g(x) = x^2$ and $h(x) = (f + g)(x) = \sqrt{x} + x^2$.

xaxis
$$\leftarrow dom(g) \equiv (-\infty, \infty)$$

xaxis $dom(h) \equiv dom(f) \cap dom(g) \equiv [0, \infty)$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 → ���

Tim Busken

Functions

Table of Contents Functions Vertical Line Test Power Functions Reciprocal Function Root Functions Symmetry Even & Odd Func Transformation

Function Composition

Composition of Functions

If f and g are two functions, the composition of f and g, written $f \circ g$ is defined by the equation

$$f \circ g = f(g(x)),$$

provided that g(x) is in the domain of f.

Example: Suppose $f(x) = \sqrt{x}$ and g(x) = 2x + 1. Then $f(g(x)) = f(2x + 1) = \sqrt{2x + 1}$.

Tim Busken

Functions

Table of Contents Functions Vertical Line Test Power Functions Reciprocal Function Root Functions Symmetry Even & Odd Functio Transformation Vertical Shift Horizontal Shift Combining Horizont and Vertical Shift

Reflection

Vertical Stretching an Shrinking

Combining Shifting Stretching and Reflecting

Horizontal Stretching and Shrinking

Graphing using Translations

Intersection of Sets

Function Combinations

Function Composition

One to One Functions

Inverse Functions

If f and g are two functions, the composition of f and g, written $f \circ g$ is defined by the equation

$$f\circ g=f(g(x)),$$

provided that g(x) is in the domain of f.

Composition of Functions

Example: Suppose $f(x) = \sqrt{x}$ and g(x) = 2x + 1. Then $f(g(x)) = f(2x + 1) = \sqrt{2x + 1}$.

Example: Suppose $g \equiv \{(1, 2), (3, 4), (5, 6)\}$ and $f \equiv \{(2, 8), (4, 9), (1, 1)\}$. Find $f \circ g$.

Solution: Since g(1) = 2 and f(2) = 8, then f(g(1)) = 8, and (1, 8) is an ordered pair in $f \circ g$. Also since g(3) = 4 and f(4) = 9, then f(g(3)) = 9, and (3, 9) is an ordered pair in $f \circ g$. Now g(5) = 6 but 6 is not in the domain of f. So there are only two ordered pairs in $f \circ g$, namely $f \circ g \equiv \{(1, 8), (3, 9)\}$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Tim Busken

Functions

Iable of Contents Functions Vertical Line Test Power Functions Reciprocal Function Root Functions Symmetry Even & Odd Functio Transformation Vertical Shift Combining Horizont and Vertical Shift Rediertion

Vertical Stretching and Shrinking

Combining Shifting Stretching and Reflecting

Horizontal Stretching and Shrinking

Graphing using Translations

Intersection of Sets

Function Combinations

Function Composition

Inverse Functions

Composition of Functions

If f and g are two functions, the composition of f and g, written $f \circ g$ is defined by the equation

$$f\circ g=f(g(x)),$$

provided that g(x) is in the domain of f.

Example: Suppose $f(x) = \sqrt{x}$ and g(x) = 2x + 1. Then $f(g(x)) = f(2x + 1) = \sqrt{2x + 1}$.

Example: Suppose $g \equiv \{(1, 2), (3, 4), (5, 6)\}$ and $f \equiv \{(2, 8), (4, 9), (1, 1)\}$. Find $f \circ g$.

Solution: Since g(1) = 2 and f(2) = 8, then f(g(1)) = 8, and (1, 8) is an ordered pair in $f \circ g$. Also since g(3) = 4 and f(4) = 9, then f(g(3)) = 9, and (3, 9) is an ordered pair in $f \circ g$. Now g(5) = 6 but 6 is not in the domain of f. So there are only two ordered pairs in $f \circ g$, namely $f \circ g \equiv \{(1, 8), (3, 9)\}$

Comment: the domain of g is {1, 3, 5} while the domain of $f \circ g$ is {1, 3}. In order to find the domain of $f \circ g$ we remove from the domain of g any number x such that g(x) is not in the domain of f.

▲□▶▲□▶▲□▶▲□▶ □ のQへ

Tim Busken

Functions

Functions Vertical Line Test Power Functions Reciprocal Function Root Functions Symmetry Even & Odd Function Transformation Vertical Shift

Combining Horizontal and Vertical Shifts

Vertical Stretching and Shrinking

Combining Shiftin Stretching and Reflecting

Horizontal Stretching and Shrinking

Graphing using Translations

Intersection of Sets

Function Combinations

Function Composition

One to One Functions

Inverse Functions

One to one functions have inverses!

A function f with domain D and range R is a <u>one to one function</u> if *either* of the following equivalent conditions is satisfied:

Whenever $x_1 \neq x_2$ in D, then $f(x_1) \neq f(x_2)$ in R.

Whenever $f(x_1) = f(x_2)$ in R, then $x_1 = x_2$ in D.

Example: $f(x) = x^2$ is *NOT* a one to one function since for $x_1 = -2$ and $x_2 = 2$, it is true that $x_1 \neq x_2$ and $f(x_1) = f(x_2) = 4$.

Tim Busken

Functions

Table of Contents Functions Vertical Line Test Power Functions Reciprocal Function Root Functions Symmetry Even & Odd Function Transformation Vertical Shift Horizontal Shift Combining Horizont and Vertical Shifts Reflection

Vertical Stretching and Shrinking

Combining Shiftin Stretching and Reflecting

Horizontal Stretching and Shrinking

Graphing using Translations

Intersection of Sets

Function Combinations

Function Composition

One to One Functions

Inverse Functions

The Horizontal Line Test

<u>A function f is one to one</u> if and only if every horizontal line intersects the graph of f in at most one point.

 $f(x) = x^{2}$ is not one to one is one to one. yyyyxyxyxyxyxis one to one.

▲□▶ ▲□▼ ▲目▼ ▲目▼ ▲□▼ ● ●

Tim Busken

Functions

Table of Contents Functions Ventrical Line Test Power Functions Reciprocal Function Root Functions Symmetry Even & Odd Functio Transformation Vertical Shift Horizontal Shift Horizontal Shifts and Vertical Shifts

Vertical Stretching and Shrinking

Combining Shifting Stretching and Reflecting

Horizontal Stretching and Shrinking

Graphing using Translations

Intersection of Sets

Function Combinations

Function Composition

One to One Functions

Inverse Functions

Inverse Function

Suppose *f* is a one to one function, with domain D and range R. The <u>inverse function</u> of *f* is the function denoted f^{-1} with domain R and range D provided that

 $f^{-1}(f(x)) = x$

Note: A function has an inverse (function) only when it is one to one.

Tim Busken

Functions

Table of Contents Functions Vertical Line Test Power Functions Reciprocal Function Root Functions Symmetry Even & Odd Function Vartical Shift

Horizontal Shift Combining Horizonta

Reflection

Vertical Stretching an Shrinking

Combining Shifting Stretching and Reflecting

Horizontal Stretching and Shrinking

Graphing using Translations

Intersection of Sets

Function Combinations

Function Composition

One to One Functions

Inverse Functions

Inverse Function

Suppose *f* is a one to one function, with domain D and range R. The <u>inverse function</u> of *f* is the function denoted f^{-1} with domain R and range D provided that

 $f^{-1}(f(x)) = x$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Note: A function has an inverse (function) only when it is one to one.

CAUTION: $f^{-1}(x) \neq f(x)^{-1}$

• $f^{-1}(x)$ is notation for the <u>function inverse</u> of a one to one function f

• $f(x)^{-1} = (f(x))^{-1} = \frac{1}{f(x)}$ is the <u>multiplicative inverse</u> of the number f(x).

Example: Suppose *f* is one-to-one and f(-9) = 15, then $f^{-1}(15) = -9$ and $(f(-9))^{-1} = 1/15$

Tim Busken

Functions

- Table of Contents Functions Vertical Line Test Power Functions Reciprocal Functions Symmetry
- Even & Odd Functions
- Transformation
- Vertical Shift
- Horizontal Shift
- Combining Horizontal and Vertical Shifts
- Vertical Stretching and Shrinking
- Combining Shifting Stretching and Reflecting
- Horizontal Stretching and Shrinking
- Graphing using Translations
- Intersection of Sets
- Function Combinations
- Function Composition
- One to One Functions
- Inverse Functions

Properties of Inverse Functions

Suppose that f is a one to one function with domain D and range R. Then

- The inverse function f⁻¹ is unique.
- The domain of f⁻¹ is the range of f.
- The range of f⁻¹ is the domain of f.
- The statement f(x) = y is equivalent to $f^{-1}(y) = x$

Note: The graph of $y = t^{-1}(x)$ is the reflection of the graph of y = f(x) about the line y = x. For every point (a, b) on the graph of f(x) there is a corresponding point (b, a) on the graph of $t^{-1}(x)$.

Tim Busken

Functions

- Table of Contents Functions Vertical Line Test Power Functions Reciprocal Function Root Functions Symmetry Even & Odd Functi Transformation Vertical Shift Horizontal Shift Combining Horizon
- Reflection
- Vertical Stretching and Shrinking
- Combining Shifting Stretching and Reflecting
- Horizontal Stretching and Shrinking
- Graphing using Translations
- Intersection of Sets
- Function Combinations
- Function Composition
- One to One Functions
- Inverse Functions

Inverse Function

How to find the inverse of a one to one function:

1 Replace f(x) with y. Then interchange x and y.

- 2 Solve the resulting equation for y.
- 3 Replace y with $f^{-1}(x)$.