Math 176 Test 4
Name:
No Calculators or Computing Devices. Use Algebraic Notation AND Show All of Your Work. No Assistance or Collaboration!

1. (5 points) Verify the identity: $\frac{\sin (x+y)+\sin (x-y)}{\cos (x+y)+\cos (x-y)}=\tan (x)$
2. (4 points) Solve the given equation in the interval $[0,2 \pi)$

$$
2 \sqrt{3} \cos (\theta)+3=0
$$

2.

3. (5 points) Verify the identity: $\frac{\sin (3 x)+\cos (3 x)}{\cos (x)-\sin (x)}=1+2 \sin (2 x)$
4. (5 points) Solve the given equation in the interval $[0,2 \pi)$

$$
2 \cos ^{2}(\theta)=\cos (\theta)+1
$$

4.
5. (4 points) Find the exact value of $\cos \left(\frac{7 \pi}{12}\right)$
6.
7. (5 points) Find the exact value of the expression $\tan \left(2 \cos ^{-1}\left(\frac{3}{7}\right)\right)$
8.
9. (3 points) Convert the polar point $(r, \theta)=\left(-\sqrt{3}, \frac{2 \pi}{3}\right)$ to its equivalent rectangular coordinate.
10.
11. (5 points) Consider the complex number $1+i \sqrt{3}$. (a) Graph the complex number in the complex plane. (b) Find the modulus and the argument. (c) Write the number in polar form.
12. \qquad
13. (5 points) Use DeMoivre's Theorem to find $(4-4 i)^{5}$
14.
15. (5 points) Find the square roots of $4-4 i$
16.
17. (5 points) Find the length and direction of the vector $\vec{u}=\langle-3,-3\rangle$
18. \qquad
19. (4 points) Consider the parametric curves:

$$
x=1-t^{2}, \quad y=1+t
$$

(a) Sketch the curve represented by the parametric equations. (b) Find a rectangular coordinate equation for the curve by eliminating the parameter.
12. \qquad
13. (5 points) Suppose the vector \vec{u} has length $|\vec{u}|=20$ and direction $\theta=60^{\circ}$ are given. Express \vec{u} in component form.
13. \qquad
14. (6 points) Two tugboats are pulling a barge as shown in the figure.

One pulls with a force of $2.0 \times 10^{4} \mathrm{lb}$. in the direction $\mathrm{N} 50^{\circ} \mathrm{E}$, and the other pulls with a force of $3.4 \times 10^{4} \mathrm{lb}$. in the direction $\mathrm{S} 75^{\circ} \mathrm{E}$.
a.) Find the resultant force on the barge as a vector.
b.) Find the magnitude and direction of the resultant force.
14. \qquad

