Final Exam Mathematics 176 Section 3491 – Fall 2013 Professor Tim Busken

Name: _____

Show all your work. Answers without the proper explanation will receive no credit. Place your answers in the space provided. Calculators <u>not</u> allowed!

1. (5 points) Find all solutions of $tan(\theta) = -\sqrt{3}$ 1. _____

2. (5 points) Find all solutions of $2\cos^2(\theta) + 3\cos(\theta) = -1$ 2.

3. (5 points) Find all solutions of log(x) + log(x - 9) = 1 3. _____

4. (5 points) Find all solutions of $\ln(x) - \ln(x - 4) = \ln(3)$ 4. _____

5. (5 points) Find all solutions of $5^{4x-7} = 125$ 5. _____

6. (5 points) Use DeMoivre's Theorem to find $(1 - \sqrt{3}i)^3$

7. (5 points) Find all solutions of $x^3 + 5x^2 - 2x - 10 = 0$ 7. _____

8. (5 points) Find the quotient and remainder of $\frac{x^4 + x^2 - 10x + 8}{x^2 - 3}$ using long division.

Find the center, foci, and vertices of the ellipse then sketch the ellipse.

9. (5 points) $16x^2 + 25y^2 - 32x + 50y + 16 = 0$

9._____

Find the standard form of the equation of the parabola with the given characteristic(s).

10. (4 points) Vertex: (x, y) = (-3, 4); Focus: (x, y) = (-3, 2)10. _____

11. (1 point) What equation represents the directrix of the parabola given in the previous question?

Find the standard form of the equation of the hyperbola with the given characteristic(s).

12. (5 points) Vertices: (1,2), (5,2); Foci: (0,2), (6,2)

12._____

13. (5 points) Find the domain of $f(x) = \sqrt{3x-5}$

13._____

14. (5 points) Find the domain of $f(x) = \frac{2x}{3x-5}$

14._____

15. (5 points) Find the domain of $f(x) = \ln(2x - 1)$

16. (5 points) Graph f(x) = 1 - 2|x + 3|. Label the important features.

17. (5 points) Graph $f(x) = \log(x + 3)$. Label the important features.

18. (5 points) Graph $r = 2\sin(3\theta)$. Label the important features.

19. (5 points) Graph $f(x) = 2\sin\left(x + \frac{\pi}{4}\right)$. Label the important features.

20. (5 points) Find the length and direction of the vector $\vec{u} = \langle -5, 5 \rangle$

20._____

21. (5 points) Simplify
$$\csc\left(\sin^{-1}\left(\frac{\sqrt{2}}{2}\right)\right)$$

22. (5 points) Write the first three terms of the sequence $a_n = \frac{1}{5n-2}$

23.	(5 points)	Write an expression for the apparent n^{th} term (a_n) of the sequence.
((Assume that <i>n</i> begins with 1.)	

$$\frac{2}{1}, \frac{-3}{3}, \frac{4}{5}, \frac{-5}{7}, \frac{6}{9}, \dots$$

23._____

22._____

24. (5 points) Find the sum
$$\sum_{k=3}^{5} (k+1)^2$$

24._____

25. (5 points) Write the first four terms of the sequence defined recursively.

$$a_1 = 2, \qquad a_{k+1} = 3a_k + 2$$

26. (5 points) Write an expression for the n^{th} term (a_n) of the *arithmetic sequence* 7, 13, 19, 25, 31, ...

26._____

27. (5 points) Find the matrix product, $A \cdot B$, assuming

$$A = \begin{bmatrix} 2 & -5 \\ -6 & 2 \end{bmatrix}, \qquad B = \begin{bmatrix} -1 & 3 \\ 3 & -4 \end{bmatrix}$$

28. (4 points) Find the determinant of $A = \begin{bmatrix} 1 & -2 & -4 \\ 2 & -3 & -6 \\ -3 & 6 & 15 \end{bmatrix}$ if it exists.

28._____

29. (1 point) Does the matrix *A* defined in the previous question have an inverse? Explain why or why not for full credit. 29.