Math 176 - Quiz 7
Professor Busken
Name: \qquad
Directions: You may NOT use a calculator or any other electronic devices. Show your work on ALL of the questions. Do NOT work together. Tutor help NOT okay. Due Thursday, September 26th.

1. (4 points) Suppose $f(x)=\frac{x^{2}-11 x-21}{2 x-3}$.
(a) Find the slant asymptote for f.
(a)
(b) Describe the end behavior of the graph of f.
(b)
2. (2 points) Solve $3 x e^{x}\left(x^{2}-7 x+20\right)\left(x^{2}-16\right) \geq 0$.
3.
4. (2 points) Use the Rational Zeros Theorem to list the set of possible zeros for $f(x)=-6 x^{7}-x-10$.
5. (2 points) Describe the end behavior of the graph of
6. \qquad $f(x)=-6 x^{7}-x-10$.
7. (4 points) Describe the behavior of the function $f(x)=\frac{x^{2}-3}{x^{3}-x^{2}}$ around its vertical asymptote(s).
8. \qquad
9. (3 points) Find the complex zeros of $f(x)=x^{2}-3 x+11$.
10. \qquad
11. (3 points) Solve $e^{2 x}+6=5 e^{x}$ for x.
12.
13. (3 points) Solve $2 x^{3} e^{2 x}-4 x e^{2 x}=0$ for x.
14. \qquad
15. (2 points) Solve $\log _{x}(25)=2$ for x.
16. \qquad
17. (6 points) Newton's Law of Cooling is used in homicide investigations to determine the time of death. The normal body temperature is $98.6^{\circ} \mathrm{F}$. Immediately following death, the body begins to cool. It has been determined experimentally that the constant in Newtons Law of Cooling is approximately $k=0.1947$, assuming that time is measured in hours. Suppose that the temperature of the surroundings is $42^{\circ} \mathrm{F}$.
(a) Find a function $T(t)$ that models the temperature t hours after death.
(b) If the temperature of the body is now $64^{\circ} \mathrm{F}$, how long ago was the time of death.
18. (2 points) Describe the end behavior of the graph of $g(x)=-\ln (x-5)$
19.
20. (6 points) Suppose you invest $\$ 750$ at an interest rate of 5% per year. Find the amounts in the account after 6 years if interest is compounded quarterly, monthly, and daily.
21. (6 points) The half-life of Plutonium-239 is 24,000 years.
(a) If a sample has a mass of 150 kg , find a function that models the mass that remains after t years.
(b) Find the mass that will remain after 1000 years.
(c) After how many years will only 15 kg remain?
