Table of Contents
4.2 Probability Fundamentals
Events
Disjoint Events
Sample Space
Venn Diagram
Computing
Probabilitios
Complementary
Events
The Rare Event Rule

4.3 The

Addition Rule
4.4 The

Multiplication
Rule
Section 4.5
The Probability of "at least one Conditional Probability
4.6 Counting
Rule

Chapter 4

Professor Tim Busken

Mathematics Department

July 5, 2015

Table of Contents

（1）Table of Contents
（2）4．2 Probability Fundamentals
Events
Disjoint Events
Sample Space
Venn Diagram
Computing Probabilities
Complementary Events
The Rare Event Rule
（3）4．3 The Addition Rule
（4）4．4 The Multiplication Rule
（5）Section 4.5
The Probability of＂at least one＂
Conditional Probability
（6）4．6 Counting
The Multiplication Rule
Factorial Rule
Permutations Rule
Combinations Rule
（7）Works Cited

Table of Contents
4.2 Probability Fundamentals
Events
Disjoint Events
Sample Space
Venn Diagram
Computing
Probabilities
Complementary
Events
The Rare Event Rule
4.3 The

Addition Rule
4.4 The

Multiplication
Rule
Section 4.5
The Probability of "at leas one
Conditional Probability

Definition

Probability is a measure or estimation of how likely it is that something will happen or that a statement is true. Probabilities are given a value between 0 (0% chance or will not happen) and 1 (100% chance or will happen).

Common Notation

$P \quad$ denotes a probability
$A, B, C, E_{1}, E_{2} \quad$ notation for specific events
$P(A) \quad$ notation for the probability of event A occurring
$P\left(E_{1}\right)$ notation for the probability of event E_{1} occurring

Chapter 4

Tim Busken

Table of Contents
4.2 Probability Fundamentals
Events
Disjoint Events
Sample Space
Venn Diagram
Computing
Probabilities
Complementary Events
The Rare Event Rule

4.3 The

Addition Rule
4.4 The

Multiplication

Events and Simple Events

Definition

An event is an outcome of an experiment or procedure.

Experiment: Toss a single die and observe the number that appears on the upper face. Here are some possible events:

Event A Observe an even number
Event $B \quad$ Observe a number less than 3
Event E_{1} Observe a 1
Event E_{2} Observe a 2
Event E_{3} Observe a 3
Event E_{4} Observe a 4
Event E_{5} Observe a 5
Event E_{6} Observe a 6

Table of Contents
4.2 Probability Fundamentals
Events
Disjoint Events
Sample Space
Venn Diagram
Computing
Probabilitios
Complementary Events
The Rare Event Rule

4.3 The

Addition Rule
4.4 The

Multiplication
Rule
Section 4.5
The Probability of at least one"
Conditional Probability
4.6 Counting

The Multipication Rule
Factorial Rule
Perrutations Rule
Combinations Rule

Events and Simple Events

Definition
Two events are mutually exclusive (or called disjoint) if, when one event occurs, the other cannot, and vice versa.

Experiment: Toss a single die	
Event A	Observe an even number
Event B	Observe a number less than 3
Event E_{1}	Observe a 1
Event E_{2}	Observe a 2
Event E_{3}	Observe a 3
Event E_{4}	Observe a 4
Event E_{5}	Observe a 5
Event E_{6}	Observe a 6

Chapter 4
Tim Busken

Table of

 Contents4.2 Probability Fundamentals
Events
Disjoint Events
Sample Space
Venn Diagram
Computing
Probabilities
Complementary Events
The Rare Event Rule

4.3 The

Addition Rule
4.4 The

Multiplication
Rule
Section 4.5
The Probability of at least one"
Conditional Probability
4.6 Counting

The Multipication Rule
Factorial Rule
Permutations Rule
Combinations Rule

Events and Simple Events

Definition
Two events are mutually exclusive (or called disjoint) if, when one event occurs, the other cannot, and vice versa.

Observations:

- Events A and B are not mutually exclusive because both events occur when the number on the upper face of the die is a 2 .

Experiment: Toss a single die	
Event A	Observe an even number
Event B	Observe a number less than 3
Event E_{1}	Observe a 1
Event E_{2}	Observe a 2
Event E_{3}	Observe a 3
Event E_{4}	Observe a 4
Event E_{5}	Observe a 5
Event E_{6}	Observe a 6

Chapter 4
Tim Busken

Table of

 Contents4.2 Probability Fundamentals
Events
Disjoint Events
Sample Space
Venn Diagram
Computing
Probabilities
Complementary
Events
The Rare Event Rule
4.3 The

Addition Rule
4.4 The

Multiplication
Rule
Section 4.5
The Probability of at least one"
Conditional Probability
4.6 Counting

The Multipication Rule
Factorial Rule
Permutations Rule
Combinations Rule

Events and Simple Events

Definition
Two events are mutually exclusive (or called disjoint) if, when one event occurs, the other cannot, and vice versa.

Observations:

- Events A and B are not mutually exclusive because both events occur when the number on the upper face of the die is a 2 .
- Since event A occurs whenever the upper face is 2,4 , or 6 , event A can be decomposed into a collection of simpler events-namely, E_{2}, E_{4}, and E_{6}-which are themselves mutually exclusive.

Experiment: Toss a single die	
Event A	Observe an even number
Event B	Observe a number less than 3
Event E_{1}	Observe a 1
Event E_{2}	Observe a 2
Event E_{3}	Observe a 3
Event E_{4}	Observe a 4
Event E_{5}	Observe a 5
Event E_{6}	Observe a 6

Chapter 4
Tim Busken
Table of Contents
4.2 Probability Fundamentals
Events
Disjoint Events
Sample Space
Venn Diagram
Computing
Probabilities
Complementary
Events
The Rare Event Rule
4.3 The

Addition Rule
4.4 The

Multiplication

Events and Simple Events

Definition
Two events are mutually exclusive (or called disjoint) if, when one event occurs, the other cannot, and vice versa.

Observations:

- Events A and B are not mutually exclusive because both events occur when the number on the upper face of the die is a 2 .
- Since event A occurs whenever the upper face is 2,4 , or 6 , event A can be decomposed into a collection of simpler events-namely, E_{2}, E_{4}, and E_{6}-which are themselves mutually exclusive.
- Similarly, event B can be decomposed into the collection of simple events $\left\{E_{1}, E_{2}\right\}$.

Definition

An event that cannot be decomposed is called a simple event.

Table of

 Contents4.2 Probability Fundamentals
Events
Disjoint Events
Sample Space
Venn Diagram
Computing
Probabilities
Complementary
Events
The Rare Event Rule
4.3 The

Addition Rule
4.4 The

Multiplication
Rule
Section 4.5
The Probability of "at least one"
Conditional Probability

Event A Observe an even number
Event B Observe a number less than 3
Event $E_{1} \quad$ Observe a 1
Event E_{2} Observe a 2
Event E_{3} Observe a 3
Event E_{4} Observe a 4
Event E_{5} Observe a 5
Event E_{6} Observe a 6

Chapter 4
Tim Busken

Definition

An event that cannot be decomposed is called a simple event.

Observations:

- Events A and B are not simple events because both events can be decomposed into a collection of simpler events.

Chapter 4
Tim Busken

Table of

 Contents4.2 Probability Fundamentals
Events
Disjoint Events
Sample Space
Venn Diagram
Computing
Probabilities
Complementary Events
The Rare Event Rule

4.3 The

Addition Rule
4.4 The

Multiplication
Rule
Section 4.5
The Probability of "at least one"
Conditional Probability

Definition

An event that cannot be decomposed is called a simple event.

Observations:

- Events A and B are not simple events because both events can be decomposed into a collection of simpler events.
- Events $E_{1}, E_{2}, \ldots, E_{6}$ are simple events.

Experiment: Toss a single die	
Event A	Observe an even number
Event B	Observe a number less than 3
Event E_{1}	Observe a 1
Event E_{2}	Observe a 2
Event E_{3}	Observe a 3
Event E_{4}	Observe a 4
Event E_{5}	Observe a 5
Event E_{6}	Observe a 6

Chapter 4
Tim Busken
Table of Contents
4.2 Probability Fundamentals

Definition

An event that cannot be decomposed is called a simple event.

Observations:

- Events A and B are not simple events because both events can be decomposed into a collection of simpler events.
- Events $E_{1}, E_{2}, \ldots, E_{6}$ are simple events.
- Simple events are mutually exclusive.

Experiment: Toss a single die	
Event A	Observe an even number
Event B	Observe a number less than 3
Event E_{1}	Observe a 1
Event E_{2}	Observe a 2
Event E_{3}	Observe a 3
Event E_{4}	Observe a 4
Event E_{5}	Observe a 5
Event E_{6}	Observe a 6

Chapter 4

Tim Busken

Table of

 Contents4.2 Probability Fundamentals

Events
Disjoint Events
Sample Space
Venn Diagram
Computing
Probabilities
Complementary
Events
The Rare Event Rule
4.3 The

Addition Rule
4.4 The

Multiplication
Rule
Section 4.5
The Probability of "at least one
Conditional Probability
4.6 Counting

The Multiplication
Rule
Factorial Rule
Permutations Rule
Combinations Rule

Experiment: Toss a single die

Event A Observe an even number Event B Observe a number less than 3
Event $E_{1} \quad$ Observe a 1
Event E_{2} Observe a 2
Event E_{3} Observe a 3
Event E_{4} Observe a 4
Event E_{5} Observe a 5
Event E_{6} Observe a 6

Chapter 4
Tim Busken

Table of Contents
4.2 Probability Fundamentals

Events
Disjoint Events
Sample Space
Venn Diagram
Computing
Probabilities
Complementary Events
The Rare Event Rule

4.3 The

Addition Rule
4.4 The

Multiplication
Rule
Section 4.5
The Probability of "at least one
Conditional Probability
4.6 Counting

The Multiplication Rule
Factorial Rule

Definition

A sample space is the complete collection of simple events possible for an experiment or procedure.

Experiment: Toss a single die	
Event A	Observe an even number
Event B	Observe a number less than 3
Event E_{1}	Observe a 1
Event E_{2}	Observe a 2
Event E_{3}	Observe a 3
Event E_{4}	Observe a 4
Event E_{5}	Observe a 5
Event E_{6}	Observe a 6

Chapter 4
Tim Busken
Table of Contents
4.2 Probability

Fundamentals
Events
Disioint Events
Sample Space
Venn Diagram
Computing
Probabilities
Complementary Events
The Rare Event Rule

4.3 The

Addition Rule
4.4 The

Multiplication
Rule
Section 4.5
The Probability of at teast one"
Conditional Probability

Definition

A sample space is the complete collection of simple events possible for an experiment or procedure.

The sample space, S, for our experiment is

$$
\begin{aligned}
S & =\{\odot \odot \odot: \because: \ddots \\
& =\left\{E_{1}, E_{2}, E_{3}, E_{4}, E_{5}, E_{6}\right\}
\end{aligned}
$$

Chapter 4
Tim Busken
Table of Contents
4.2 Probability

Fundamentals
Events
Disjoint Events
Sample Space
Venn Diagram
Computing
Probabilities
Complementary
Events
The Rare Event Rule

Definition

A sample space is the complete collection of simple events possible for an experiment or procedure.

The sample space, S, for our experiment is

$$
\begin{aligned}
S & =\{\odot \odot: \because \because: 㔾 \\
& =\left\{E_{1}, E_{2}, E_{3}, E_{4}, E_{5}, E_{6}\right\}
\end{aligned}
$$

Chapter 4
Tim Busken
Table of Contents
4.2 Probability Fundamentals

Events
Disjoint Events
Sample Space
Venn Diagram
Computing
Probabilities
Complementary Events
The Rare Event Rule

Definition

A sample space is the complete collection of simple events possible for an experiment or procedure.

The sample space, S, for our experiment is

$$
\begin{aligned}
S & =\{\odot \odot \odot: Q(: \text { 回 }\} \\
& =\left\{E_{1}, E_{2}, E_{3}, E_{4}, E_{5}, E_{6}\right\}
\end{aligned}
$$

The sum of the probabilities for all simple events in any sample space, S, equals 1
Event
E_{1}
E_{2}

Table of

 Contents4.2 Probability Fundamentals
Events
Disjoint Events
Sample Space
Venn Diagram
Computing
Probabilities
Complementary
Events
The Rare Event Rule
4.3 The

Addition Rule

4.4 The

Multiplication
Rule
Section 4.5
The Probability of "at least one"
Conditional Probability
4.6 Counting

The Multiplication Rule
Factorial Rule
Permutations Rule
Combinations Rule

It is often helpful to visualize an experiment using a Venn Diagram, (right). The outer box represents the sample space, which contains all of the mutually exclusive, simple events.

$$
S
$$

$$
\begin{aligned}
S & =\{\odot \odot \odot: \odot:\} \\
& =\left\{E_{1}, E_{2}, E_{3}, E_{4}, E_{5}, E_{6}\right\}
\end{aligned}
$$

Experiment: Toss a single die
Event A Observe an even number

Event B Observe a number less than 3
Event $E_{1} \quad$ Observe a 1
Event E_{2} Observe a 2
Event E_{3} Observe a 3
Event E_{4} Observe a 4
Event E_{5} Observe a 5
Event E_{6} Observe a 6

Table of

 Contents4.2 Probability Fundamentals
Events
Disjoint Events
Sample Space
Venn Diagram
Computing
Probabilities
Complementary
Events
The Rare Event Rule

4.3 The

Addition Rule
4.4 The

Multiplication
Rule
Section 4.5
The Probability of "at least one"
Conditional Probability

It is often helpful to visualize an experiment using a Venn Diagram, (right). The outer box represents the sample space, which contains all of the mutually exclusive, simple events.

Event A is the circled collection of simple events, $\left\{E_{2}, E_{4}, E_{6}\right\}$.

Event B is the circled collection of simple events, $\left\{E_{1}, E_{2}\right\}$.

$$
S
$$

$$
\begin{aligned}
S & =\{\odot \odot \odot: \because:(:) \\
& =\left\{E_{1}, E_{2}, E_{3}, E_{4}, E_{5}, E_{6}\right\}
\end{aligned}
$$

Experiment: Toss a single die

Event A Observe an even number
Event B Observe a number less than 3
Event $E_{1} \quad$ Observe a 1
Event E_{2} Observe a 2
Event E_{3} Observe a 3
Event E_{4} Observe a 4
Event E_{5} Observe a 5
Event E_{6} Observe a 6

It is often helpful to visualize an experiment using a Venn Diagram, (right). The outer box represents the sample space, which contains all of the mutually exclusive, simple events.

Event A is the circled collection of simple events, $\left\{E_{2}, E_{4}, E_{6}\right\}$.

Event B is the circled collection of simple events, $\left\{E_{1}, E_{2}\right\}$.

Events A and B are called compound events

 because they are events combining two or more simple events.$$
S
$$

$$
\begin{aligned}
S & =\{\odot \odot \odot: \odot:\} \\
& =\left\{E_{1}, E_{2}, E_{3}, E_{4}, E_{5}, E_{6}\right\}
\end{aligned}
$$

$\underline{\text { Experiment: Toss a single die }}$

Event A Observe an even number

Event B Observe a number less than 3
Event E_{1} Observe a 1
Event E_{2} Observe a 2
Event E_{3} Observe a 3
Event E_{4} Observe a 4
Event E_{5} Observe a 5
Event E_{6} Observe a 6

Table of

 Contents4.2 Probability Fundamentals Events
Disjoint Events
Sample Space
Venn Diagram
Computing
Probabilities
Complementary Events
The Rare Event Rule
4.3 The

Addition Rule
4.4 The

Multiplication
Rule
Section 4.5
The Probability of at least one"
Conditional Probability

It is often helpful to visualize an experiment using a Venn Diagram, (right). The outer box represents the sample space, which contains all of the mutually exclusive, simple events.

Event A is the circled collection of simple events, $\left\{E_{2}, E_{4}, E_{6}\right\}$.

Event B is the circled collection of simple events, $\left\{E_{1}, E_{2}\right\}$.

Events A and B are called compound events because they are events combining two or more simple events.

$$
\begin{aligned}
P(A) & =P\left(E_{2} \text { or } E_{4} \text { or } E_{6}\right) \\
& =P\left(E_{2}\right)+P\left(E_{4}\right)+P\left(E_{6}\right) \\
& =\frac{1}{6}+\frac{1}{6}+\frac{1}{6} \\
& =\frac{3}{6}=0.5
\end{aligned}
$$

S

$$
\begin{aligned}
S & =\{\odot \odot \odot: \odot:\} \\
& =\left\{E_{1}, E_{2}, E_{3}, E_{4}, E_{5}, E_{6}\right\}
\end{aligned}
$$

Experiment: Toss a single die

Event A Observe an even number
Event B Observe a number less than 3
Event $E_{1} \quad$ Observe a 1
Event E_{2} Observe a 2
Event E_{3} Observe a 3
Event E_{4} Observe a 4
Event E_{5} Observe a 5
Event $E_{6} \quad$ Observe a 6

Suppose a couple plans to have three children. Assume that girls and boys are equally likely and that the gender of one child is not influenced by the gender of any other child. What is the sample space, or set of all possible outcomes?

Suppose a couple plans to have three children. Assume that girls and boys are equally likely and that the gender of one child is not influenced by the gender of any other child. What is the sample space, or set of all possible outcomes?
$1^{\text {st }}$ Child $\quad 2^{\text {nd }}$ Child $\quad 3^{\text {rd }}$ Child

$$
S=\left\{E_{1}, E_{2}, E_{3}, E_{4}, E_{5}, E_{6}, E_{7}, E_{8}\right\}
$$

Chapter 4
Tim Busken

Computing Probabilities

Table of

 Contents4.2 Probability

Fundamentals

Events
Disjoint Events
Sample Space
Venn Diagram
Computing
Probabilities
Complementary
Events
The Rare Event Rule
4.3 The

Addition Rule
4.4 The

Multiplication
Rule
Section 4.5
The Probability of "at least one"

Conditional Probability
4.6 Counting

The Multiplication Rule

Factorial Rule
Permutations Rule
Combinations Rule

Computing Probabilities

Definition (The Classical Approach)

Assume that a given procedure has n different simple events and that each of those simple events has an equal chance of occurring. If event A can occur in s of these n ways, then

$$
P(A)=\frac{\# \text { of ways A can occur }}{\# \text { of different simple events }}=\frac{s}{n}
$$

Example: Toss a single die. Determine the following probabilities:

(1)	$P\left(E_{1}\right)$
(2)	$P\left(E_{5}\right)$
(3)	$P(A)$
(4)	$P(B)$

Chapter 4
Tim Busken

Table of

 Contents4.2 Probability Fundamentals

Events
Disjoint Events
Sample Space
Venn Diagram
Computing
Probabilities
Complementary
Events
The Rare Event Rule
4.3 The

Addition Rule
4.4 The

Multiplication
Rule
Section 4.5
The Probability of "at least one"
Conditional Probability
4.6 Counting

The Multiplication Rule
Factorial Rule
Permutations Rule
Combinations Rule

Computing Probabilities

Definition (The Relative Frequency Approach)

Conduct (or observe) a procedure, and count the number of times event A actually occurs.
Based on these actual results, $\mathrm{P}(\mathrm{A})$ is approximated as

$$
P(A)=\frac{\# \text { of times A occurred }}{\# \text { of times procedure was repeated }}
$$

Example: When trying to determine the probability that an individual car crashes in a year, we must examine past results to determine the number of cars in use in a year and the number of them that crashed, then find the ratio of the two.[?]

$$
P(\text { crash })=\frac{\# \text { of times cars that crashed }}{\text { total \#of cars }}=\frac{6,511,100}{135,670,000}=0.0480
$$

Chapter 4
Tim Busken

Table of

 Contents4.2 Probability Fundamentals

Events
Disjoint Events
Sample Space
Venn Diagram
Computing
Probabilities
Complementary Events
The Rare Event Rule
4.3 The

Addition Rule
4.4 The Multiplication Rule

Section 4.5
The Probability of "at least one"
Conditional Probability
4.6 Counting

The Multiplication Rule
Factorial Rule
Permutations Rule
Combinations Rule

Computing Probabilities

Definition (The Relative Frequency Approach)

Conduct (or observe) a procedure, and count the number of times event A actually occurs.
Based on these actual results, $\mathrm{P}(\mathrm{A})$ is approximated as

$$
P(A)=\frac{\# \text { of times A occurred }}{\# \text { of times procedure was repeated }}
$$

Example: When trying to determine the probability that an individual car crashes in a year, we must examine past results to determine the number of cars in use in a year and the number of them that crashed, then find the ratio of the two.[?]

$$
P(\text { crash })=\frac{\# \text { of times cars that crashed }}{\text { total \#of cars }}=\frac{6,511,100}{135,670,000}=0.0480
$$

Theorem (Law of Large Numbers)
As a procedure is repeated again and again, the relative frequency probability of an event tends to approach the actual probability.

Computing Probabilities

Table of Contents
4.2 Probability Fundamentals
Events
Disjoint Events
Sample Space
Venn Diagram
Computing Probabilities
Complementary Events
The Rare Event Rule
4.3 The

Addition Rule
4.4 The

Multiplication
Rule
Section 4.5
The Probability of "at leastone" Conditional Probability

Definition (Subjective Probability)
$P(A)$, the probability of event A, is estimated by using knowledge of the relevant circumstances.

Computing Probabilities

Table of Contents
4.2 Probability Fundamentals
Events
Disjoint Events
Sample Space
Venn Diagram
Computing Probabilities
Complementary Events
The Rare Event Rule
4.3 The

Addition Rule
4.4 The

Multiplication
Rule
Section 4.5
The Probability of "at leastone" Conditional Probability

Definition (Subjective Probability)
$P(A)$, the probability of event A, is estimated by using knowledge of the relevant circumstances.

Chapter 4
Tim Busken
Table of Contents

4．2 Probability Fundamentals
Events Disjoint Events
Sample Space
Venn Diagram
Computing Probabilities

Complementary

Events
The Rare Event Rule
4．3 The
Addition Rule
4．4 The
Multiplication
Rule
Section 4.5
The Probability of＂at least one
Conditional Probability
4．6 Counting The Multiplication Rule
Factorial Rule
Permutations Rule Combinations Rule Works Cited

Experiment：Roll a pair of dice．Record the sum of the two numbers that appear on the upper faces of the dice．

$\begin{gathered} \text { Roll } \\ 2 \end{gathered}$	\bullet						$\begin{gathered} \text { Probability } \\ \frac{1}{36} \end{gathered}$
3	\odot	－\odot					$\frac{2}{36}$
4	－\odot	®－	®®				$\frac{3}{36}$
5	－ 0	®	$0 \cdot 0$	－®＊			$\frac{4}{36}$
6	－$\%$	囚－	（1\％	－®	$\odot \cdot$		$\frac{5}{36}$
7	－10	田 $\square^{\text {－}}$	8\％	－$\%$	（1\％	®®：	$\frac{6}{36}$
8	－ 0 回	17．	囚 6	－$\%$	（1：		$\frac{5}{36}$
9	（2）	田	ㅇ：\％	88\％			$\frac{4}{36}$
10	（1）	畞：	囚				$\frac{3}{36}$
11	囚⿴囗	（1］					$\frac{2}{36}$
12	閔						$\frac{1}{36}$

Determine the following probabilities：
－P（the sum is 8$)$
－$P($ rolling a double 1$)$

Find the probability that when a couple has three children, they will have exactly 2 girls. Assume that girls and boys are equally likely and that the gender of one child is not influenced by the gender of any other child. [?]

Find the probability that when a couple has three children, they will have exactly 2 girls. Assume that girls and boys are equally likely and that the gender of one child is not influenced by the gender of any other child. [?]

Experiment: Pick a card at random from a shuffled deck of cards.

Determine the following probabilities:

- P (the card is a four of hearts)
- P (the card is a queen)
- P (the card is not an ace)

Chapter 4
Tim Busken

Table of

 Contents4.2 Probability

Fundamentals
Events
Disjoint Events
Sample Space
Venn Diagram
Computing
Probabilities
Complementary
Events
The Rare Event Rule
4.3 The

Addition Rule
4.4 The

Multiplication
Rule
Section 4.5
The Probability of 'at least one"
Conditional Probability
4.6 Counting

The Multipication
Rule
Factorial Rule
Permutations Rule
Combinations Rule

Computing Probabilities

Example: In the last 30 years, death sentence executions in the United States included 795 men and 10 women (based on data from the Associated Press). If an execution is randomly selected, find the probability that the person executed is a women. Is it unusual for a woman to be executed?

We use the relative frequency approach here, since the likelihood that a women or man is executed is not the same.

Complementary Events

Table of Contents
4.2 Probability Fundamentals
Events
Disjoint Events
Sample Space
Venn Diagram
Computing
Probabilities
Complementary Events
The Rare Event Rule
4.3 The

Addition Rule
4.4 The

Multiplication
Rule
Section 4.5
The Probability of "at least one"
Conditional Probability
4.6 Counting

The Multiplication
Rule
Factorial Rule
Permutaions Rule
Combinations Rule

Definition
The complement of event A, denoted by \bar{A} or A^{C}, consists of all the simple events in the sample space which are not in A.

Complementary Events

Table of

 Contents4.2 Probability Fundamentals
Events
Disjoint Events
Sample Space
Venn Diagram
Computing
Probabilities
Complementary Events
The Rare Event Rule

4.3 The

Addition Rule
4.4 The

Multiplication
Rule
Section 4.5

The Probability of "at

 least one"Conditional Probability

Definition
The complement of event A, denoted by \bar{A} or A^{C}, consists of all the simple events in the sample space which are not in A.

Chapter 4
Tim Busken

Table of

 Contents4.2 Probability Fundamentals
Events
Disjoint Events
Sample Space
Venn Diagram
Computing
Probabilities
Complementary Events
The Rare Event Rule

4.3 The

Addition Rule
4.4 The

Multiplication
Rule
Section 4.5
The Probability of "at least one"
Conditional Probability

Complementary Events

Definition

The complement of event A, denoted by \bar{A} or A^{C}, consists of all the simple events in the sample space which are not in A.

For the single die experiment, this means
Event \bar{A} observe an odd number
Event \bar{B} observe a number greater than or equal to 3
Event $\overline{E_{2}}$ observe any number in S except 2
S

$$
\begin{aligned}
S & =\{\odot \odot \odot: Q: ⿴ 囗: ~ \\
& =\left\{E_{1}, E_{2}, E_{3}, E_{4}, E_{5}, E_{6}\right\}
\end{aligned}
$$

Experiment: Toss a single die

Event A Observe an even number
Event B Observe a number less than 3
Event $E_{1} \quad$ Observe a 1
Event E_{2} Observe a 2
Event E_{3} Observe a 3
Event E_{4} Observe a 4
Event E_{5} Observe a 5
Event E_{6} Observe a 6

Chapter 4
Tim Busken

Table of

 Contents4.2 Probability Fundamentals Events
Disjoint Events
Sample Space
Venn Diagram
Computing
Probabilities
Complementary Events
The Rare Event Rule
4.3 The

Addition Rule
4.4 The

Multiplication
Rule
Section 4.5
The Probability of at least one
Conditional Probability
4.6 Counting

The Multiplication Rule
Factorial Rule
Permutations Rule Combinations Rule

Complementary Events

Definition

The complement of event A , denoted by \bar{A} or A^{C}, consists of all the simple events in the sample space which are not in A.

For the single die experiment, this means

$$
\text { Event } \bar{A} \quad \text { observe an odd number }
$$

Event \bar{B} observe a number greater than or equal to 3
Event $\overline{E_{2}}$ observe any number in S except 2

A fundamental property of complementary events may now be apparent to you:

$$
P(A)+P(\bar{A})=1
$$

the sum of the probabilities of an event and its complement is always one (regardless of whether an event is simple or compound).

$$
\begin{aligned}
S & =\{\odot \odot \odot:: O: B\} \\
& =\left\{E_{1}, E_{2}, E_{3}, E_{4}, E_{5}, E_{6}\right\}
\end{aligned}
$$

$$
S
$$

Experiment: Toss a single die

Event A Observe an even number
Event B Observe a number less than 3
Event $E_{1} \quad$ Observe a 1
Event E_{2} Observe a 2
Event E_{3} Observe a 3
Event E_{4} Observe a 4
Event E_{5} Observe a 5
Event E_{6} Observe a 6

Chapter 4
Tim Busken

Concept Check

Question: Suppose A is any event, either simple or compound. Are the events A and A complement mutually exclusive?

Concept Check

Table of Contents
4.2 Probability Fundamentals

Events

Disjoint Events
Sample Space
Venn Diagram
Computing
Probabilities
Complementary Events
The Rare Event Rule

4.3 The

Addition Rule
4.4 The

Multiplication
Rule
Section 4.5
The Probability of "at least one
Conditional Probability
4.6 Counting

The Multiplication Rule
Factorial Rule

Question: Suppose A is any event, either simple or compound. Are the events A and A complement mutually exclusive?

Chapter 4
Tim Busken

Table of

 Contents4.2 Probability

Fundamentals
Events
Disjoint Events
Sample Space
Venn Diagram
Computing
Probabilites
Complementary Events
The Rare Event Rule
4.3 The

Addition Rule
4.4 The

Multiplication
Rule
Section 4.5
The Probability of "at least one
Conditional Probability
4.6 Counting

The Multipication
Rule
Factorial Rule

Complementary Events

Example: Women have a 0.25% rate of red/green color blindness. If a women is randomly $\overline{\text { selected, }}$ what is the probability that she does not have red/green color blindness?

The Rare Event Rule

Theorem (The Rare Event Rule)

If, under a given assumption, the probability of a particular observed event is extremely small, we conclude that the assumption is probably not correct.

Example: Sally thinks there is no way she can get an A on Mr. Busken's first stats exam. Then she aces the exam. By the rare event rule, her assumption must have been incorrect.

See example 12, p146 in the text for another example.

Chapter 4

Tim Busken

S

Table of

 Contents4.2 Probability

Fundamentals
Events
Disjoint Events
Sample Space
Venn Diagram
Computing
Probabilities
Complementary Events

The Rare Event Rule
4.3 The

Addition Rule
4.4 The

Multiplication
Rule

Section 4.5

The Probability of "at least one"

Conditional Probability

4.6 Counting

The Multiplication Rule

Factorial Rule
Permutations Rule
Combinations Rule

Experiment: Toss a single die

Event A Observe an even number
Event B Observe a number less than 3
Event E_{1} Observe a 1
Event E_{2} Observe a 2
Event E_{3} Observe a 3
Event E_{4} Observe a 4
Event E_{5} Observe a 5
Event E_{6} Observe a 6

$$
\begin{aligned}
& =\left\{E_{1}, E_{2}, E_{3}, E_{4}, E_{5}, E_{6}\right\}
\end{aligned}
$$

Chapter 4

Tim Busken

S

Table of

 Contents4.2 Probability

Fundamentals
Events
Disjoint Events
Sample Space
Venn Diagram
Computing
Probabilities
Complementary Events

The Rare Event Rule
4.3 The

Addition Rule
4.4 The

Multiplication
Rule

Section 4.5

The Probability of "at least one"

Conditional Probability

4.6 Counting

The Multiplication Rule

Factorial Rule
Permutations Rule
Combinations Rule

Experiment: Toss a single die

Event A Observe an even number
Event B Observe a number less than 3
Event E_{1} Observe a 1
Event E_{2} Observe a 2
Event E_{3} Observe a 3
Event E_{4} Observe a 4
Event E_{5} Observe a 5
Event E_{6} Observe a 6

$$
\begin{aligned}
& =\left\{E_{1}, E_{2}, E_{3}, E_{4}, E_{5}, E_{6}\right\}
\end{aligned}
$$

Tim Busken
Table of Contents
4.2 Probability Fundamentals
Events
Disjoint Events
Sample Space
Venn Diagram
Computing
Probabilities
Complementary
Events
The Rare Event Rule

4.3 The

Addition Rule
4.4 The

Multiplication
Rule
Section 4.5
The Probability of "at least one'
Conditional Probability

Definition (The Addition Rule)

$$
\begin{gathered}
P(A \text { or } B)=P(A)+P(B)-P(A \text { and } B) \\
P(A \cup B)=P(A)+P(B)-P(A \cap B)
\end{gathered}
$$

Venn Diagram for Events that are not mutually exclusive

Venn Diagram for mutually exclusive events

$$
P(A \cap B)=0
$$

Chapter 4

Problem \#12: Determine $P(A$ or $B)$

Tim Busken

Table of Contents
4.2 Probability

Fundamentals
Events
Disjoint Events
Sample Space
Venn Diagram
Computing
Probabilities
Complementary Events
The Rare Event Rule
4.3 The

Addition Rule

4.4 The

Multiplication
Rule
Section 4.5
The Probability of "at least one
Conditional Probability
4.6 Counting

The Multiplication Rule
Factorial Rule
Permutations Rule
Combinations Rule

S

$$
\begin{aligned}
S & =\{\odot \odot \odot: Q: ⿴ 囗: ~ \\
& =\left\{E_{1}, E_{2}, E_{3}, E_{4}, E_{5}, E_{6}\right\}
\end{aligned}
$$

Problem \#12: Determine $P(A$ or $B)$

Tim Busken

Table of

 Contents4.2 Probability Fundamentals
Events
Disjoint Events
Sample Space
Venn Diagram

Computing

Probabilities
Complementary Events
The Rare Event Rule
4.3 The

Addition Rule

4.4 The

Multiplication
Rule
Section 4.5
The Probability of "at least one"
Conditional Probability
4.6 Counting

The Multiplication Rule
Factorial Rule
Permutations Rule
Combinations Rule
S

$$
\begin{aligned}
S & =\{\odot \odot \odot:: \odot: B\} \\
& =\left\{E_{1}, E_{2}, E_{3}, E_{4}, E_{5}, E_{6}\right\}
\end{aligned}
$$

$P(A \cup B)=P($ observe an even number OR observe a number less than 3)

Problem \#12: Determine $P(A$ or $B)$

Tim Busken

Table of

 Contents4.2 Probability Fundamentals
Events
Disjoint Events
Sample Space
Venn Diagram
Computing
Probabilities
Complementary Events
The Rare Event Rule
4.3 The

Addition Rule

4.4 The

Multiplication Rule
S

$$
\begin{aligned}
S & =\{\bullet \bullet: \because: \% \\
& =\left\{E_{1}, E_{2}, E_{3}, E_{4}, E_{5}, E_{6}\right\}
\end{aligned}
$$

$P(A \cup B)=P($ observe an even number OR observe a number less than 3)

$$
=P(A)+P(B)-P(A \text { and } B)
$$

Problem \#12: Determine $P(A$ or $B)$

Tim Busken
Table of Contents
4.2 Probability Fundamentals
Events
Disjoint Events
Sample Space
Venn Diagram

Computing

Probabilities
Complementary Events
The Rare Event Rule
4.3 The

Addition Rule

4.4 The

Multiplication Rule

Section 4.5
The Probability of "at least one"
Conditional Probability

S

$$
\begin{aligned}
S & =\{\odot \odot: \because: O \\
& =\left\{E_{1}, E_{2}, E_{3}, E_{4}, E_{5}, E_{6}\right\}
\end{aligned}
$$

$P(A \cup B)=P($ observe an even number OR observe a number less than 3)

$$
=P(A)+P(B)-P(A \text { and } B)
$$

$$
=\frac{3}{6}+\frac{2}{6}-\frac{1}{6}
$$

Problem \#12: Determine $P(A$ or $B)$

Tim Busken

Table of

 Contents4.2 Probability Fundamentals
Events
Disjoint Events
Sample Space
Venn Diagram

Computing

Probabilities
Complementary Events
The Rare Event Rule
4.3 The

Addition Rule
4.4 The

Multiplication
Rule
Section 4.5
The Probability of "at leastone"
Conditional Probability
S

$$
\begin{aligned}
S & =\{\odot \odot: \because: O \\
& =\left\{E_{1}, E_{2}, E_{3}, E_{4}, E_{5}, E_{6}\right\}
\end{aligned}
$$

$P(A \cup B)=P($ observe an even number OR observe a number less than 3)
$=P(A)+P(B)-P(A$ and $B)$
$=\frac{3}{6}+\frac{2}{6}-\frac{1}{6}$
$=\frac{4}{6} \doteq 0.67$

Problem \#12: Determine $P(A$ or $B)$

Tim Busken
Table of Contents
4.2 Probability Fundamentals
Events
Disjoint Events
Sample Space
Venn Diagram

Computing

Probabilities
Complementary Events
The Rare Event Rule
4.3 The

Addition Rule

4.4 The

Multiplication

Rule

S

$$
\begin{aligned}
S & =\{\bullet \bullet: \because: O \\
& =\left\{E_{1}, E_{2}, E_{3}, E_{4}, E_{5}, E_{6}\right\}
\end{aligned}
$$

Alternatively, $A \cup B \equiv\left\{E_{1}, E_{2}, E_{4}, E_{6}\right\}$, so $P(A \cup B)=\frac{4}{6} \doteq 0.67$ using the classical approach.
Chapter 4
Tim Busken
Table of
Contents
4．2 Probability
Fundamentals
Events
Disiont Events
Sample space
Venn Diagram
Computing
Probabilites
Complementary
Events
The Rare Event Rule
4．3 The
Addition Rule
4．4 The
Multiplication
Rule
Section 4.5
The Probability of＂at
leastone
Conditional Probability
4.6 Counting
The Multipication
Rule
Factorial Rule
Permutaitens Rule
Combinations Rule
Works Cited

$\begin{gathered} \text { Roll } \\ 2 \end{gathered}$	$\bullet \cdot$						$\begin{gathered} \hline \text { Probability } \\ \frac{1}{36} \end{gathered}$
3	$\bullet \cdot$	\bigcirc					$\frac{2}{36}$
4	－\cdot	$\stackrel{\odot}{\circ}$	－				$\frac{3}{36}$
5	－ 0	18	®．	$\bullet \cdot 8$			$\frac{4}{36}$
6	－ 6	앙	18．	®®	$\odot \cdot+$		$\frac{5}{36}$
7	－${ }^{\text {® }}$	（1）	囚．	®®		®®	$\frac{6}{36}$
8	－$\square^{\text {P }}$	1\％\％	앙	¢	［8：		$\frac{5}{36}$
9	¢	17．	⿴囗大丶⿺：	830			$\frac{4}{36}$
10	18：	ㄸ：3	앙				$\frac{3}{36}$
11	囚⿴囗才	19\％					$\frac{2}{36}$
12	（17：						$\frac{1}{36}$

Problem \＃13：Let A be the event the observed pair sums to 10 and let B be the event the observed pair is a double．Determine $P(A \cup B)$ ．
Chapter 4
Tim Busken
Table of
Contents
4．2 Probability
Fundamentals
Events
Disiont Events
Sample space
Venn Diagram
Computing
Probabilites
Complementary
Events Rare Event Rule
4．3 The
Addition Rule
4．4 The
Multiplication
Rule
Section 4.5
The Probability of atat
leastone
Conditional Probability
4．6 Counting
The Multipication
Rule
Factorial Rule
Permutaitens Rule
Combinations Rule
Works Cited

$\begin{gathered} \text { Roll } \\ 2 \end{gathered}$	$\bullet \cdot$						$\begin{gathered} \text { Probability } \\ \frac{1}{36} \end{gathered}$
3	$\cdots \cdot$	$\square \cdot$					$\frac{2}{36}$
4	$\bullet \cdot$	® \odot	\oplus				$\frac{3}{36}$
5	－	18．	－®	$\bullet \cdot$			$\frac{4}{36}$
6	－ 6	앙	18．	－ 0	\odot		$\frac{5}{36}$
7	－ 0	（1）	囚\％	－ช	（\％）	¢	$\frac{6}{36}$
8	－\cdot 回	（1．）	囚	® \odot	18：		$\frac{5}{36}$
9	․ㅜ）	19．＊	囚：	®\％			$\frac{4}{36}$
10	180］	（1）	⿴囗大⺀⿺				$\frac{3}{36}$
11	앙	（1）					$\frac{2}{36}$
12	䀦：						$\frac{1}{36}$

Problem \＃13：Let A be the event the observed pair sums to 10 and let B be the event the observed pair is a double．Determine $P(A \cup B)$ ．

$$
P(A \cup B)=P(A)+P(B)-P(A \text { and } B)
$$

Problem \#13: Let A be the event the observed pair sums to 10 and let B be the event the observed pair is a double. Determine $P(A \cup B)$.

$$
\begin{aligned}
P(A \cup B) & =P(A)+P(B)-P(A \text { and } B) \\
& =\frac{3}{36}+\frac{6}{36}-\frac{1}{36}
\end{aligned}
$$

Chapter 4
Tim Busken
Table of Contents
4.2 Probability Fundamentals
Events
Disjoint Events
Sample Space
Venn Diagram
Computing
Probabilities
Complementary Events
The Rare Event Rule
4.3 The

Addition Rule

4.4 The

Multiplication
Rule
Section 4.5
The Probability of "at leastone"
Conditional Probability
Chapter 4
Tim Busken
Table of
Contents
4．2 Probability
Fundamentals
Events
Disiont Events
Sample space
Venn Diagram
Computing
Probabilites
Complementary
Events
The Rare Event Rule
4．3 The
Addition Rule
4．4 The
Multiplication
Rule
Section 4.5
The Probability of＂at
leastone
Conditional Probability
4.6 Counting
The Multipication
Rule
Factorial Rule
Permutaitens Rule
Combinations Rule
Works Cited

$\begin{gathered} \text { Roll } \\ 2 \end{gathered}$	\bullet						$\begin{gathered} \hline \text { Probability } \\ \frac{1}{36} \end{gathered}$
3	\bullet	\bigcirc					$\frac{2}{36}$
4	－	®	Q®				$\frac{3}{36}$
5	－ 0	$8 \cdot$	¢ \odot	$\bullet \cdot$			$\frac{4}{36}$
6	－ 6	앙	18.	－	\odot		$\frac{5}{36}$
7	－${ }^{\text {® }}$	（1）	囚－	－		8：	$\frac{6}{36}$
8	－ D $^{\text {P }}$	1\％	방	セ\％	（1\％		$\frac{5}{36}$
9	©	19．	앙：	18\％			$\frac{4}{36}$
10	18：	부：	앙				$\frac{3}{36}$
11		19\％					$\frac{2}{36}$
12	風问						$\frac{1}{36}$

Problem \＃14：Let A be the event the observed pair sums to 10 and let B be the event the observed pair sums to 4 ．Determine $P(A \cup B)$ ．
Chapter 4
Tim Busken
Table of
Contents
4．2 Probability
Fundamentals
Events
Disiont Events
Sample space
Venn Diagram
Computing
Probabilites
Complementary
Events Rare Event Rule
4．3 The
Addition Rule
4．4 The
Multiplication
Rule
Section 4.5
The Probability of atat
leastone
Conditional Probability
4．6 Counting
The Multipication
Rule
Factorial Rule
Permutaitens Rule
Combinations Rule
Works Cited

$\begin{gathered} \text { Roll } \\ 2 \end{gathered}$	$\bullet \cdot$						$\begin{gathered} \text { Probability } \\ \frac{1}{36} \end{gathered}$
3	$\cdots \cdot$	$\square \cdot$					$\frac{2}{36}$
4	$\bullet \cdot$	® \odot	\oplus				$\frac{3}{36}$
5	－	18．	－®	$\bullet \cdot$			$\frac{4}{36}$
6	－ 6	앙	18．	－ 0	\odot		$\frac{5}{36}$
7	－ 0	（1）	囚\％	－ช	（\％）	¢	$\frac{6}{36}$
8	－\cdot 回	（1．）	囚	® \odot	18：		$\frac{5}{36}$
9	․ㅜ）	19．＊	囚：	®\％			$\frac{4}{36}$
10	180］	（1）	⿴囗大⺀⿺				$\frac{3}{36}$
11	앙	（1）					$\frac{2}{36}$
12	䀦：						$\frac{1}{36}$

Problem \＃14：Let A be the event the observed pair sums to 10 and let B be the event the observed pair sums to 4．Determine $P(A \cup B)$ ．

$$
P(A \cup B)=P(A)+P(B)-P(A \text { and } B)
$$

4.4 The

Multiplication
Rule
Section 4.5
Problem \#14: Let A be the event the observed pair sums to 10 and let B be the event the observed pair sums to 4. Determine $P(A \cup B)$.

$$
\begin{aligned}
P(A \cup B) & =P(A)+P(B)-P(A \text { and } B) \\
& =\frac{3}{36}+\frac{3}{36}-\frac{0}{36}
\end{aligned}
$$

4.4 The

Multiplication
Rule
Section 4.5
Problem \#14: Let A be the event the observed pair sums to 10 and let B be the event the observed pair sums to 4. Determine $P(A \cup B)$.

$$
\begin{aligned}
P(A \cup B) & =P(A)+P(B)-P(A \text { and } B) \\
& =\frac{3}{36}+\frac{3}{36}-\frac{0}{36} \\
& =\frac{6}{36} \doteq 0.17
\end{aligned}
$$

Chapter 4
Tim Busken
Table of Contents
4.2 Probability Fundamentals
Events
Disjoint Events
Sample Space
Venn Diagram
Computing
Probabilities
Complementary Events
The Rare Event Rule
4.3 The

Addition Rule
4.4 The

Multiplication
Rule
Section 4.5
The Probability of "at least one"
Conditional Probability
4.6 Counting

The Multiplication Rule
Factorial Rule
Permulations Rule
Combinations Rule

Problem \#15: Pick a card at random from a shuffled deck. Let A be the event the observed card is a 4 and let B be the event the card is a heart. Determine $P(A \cup B)$.

Chapter 4
Tim Busken
Table of Contents
4.2 Probability Fundamentals
Events
Disjoint Events
Sample Space
Venn Diagram
Computing
Probabilities
Complementary Events
The Rare Event Rule
4.3 The

Addition Rule
4.4 The

Multiplication Rule

Section 4.5
The Probability of at least one"
Conditional Probability
4.6 Counting

The Multiplication Rule
Factorial Rule
Permutations Rule
Combinations Rule

Problem \#15: Pick a card at random from a shuffled deck. Let A be the event the observed card is a 4 and let B be the event the card is a heart. Determine $P(A \cup B)$.

$$
P(A \cup B)=P(A)+P(B)-P(A \text { and } B)
$$

Chapter 4
Tim Busken
Table of Contents
4.2 Probability Fundamentals
Events
Disjoint Events
Sample Space
Venn Diagram
Computing
Probabilities
Complementary Events
The Rare Event Rule
4.3 The

Addition Rule
4.4 The

Multiplication
Rule
Section 4.5
The Probability of "at least one"
Conditional Probabitity
4.6 Counting

The Multiplication
Rule
Factorial Rule
Permutations Rule
Combinations Rule

Problem \#15: Pick a card at random from a shuffled deck. Let A be the event the observed card is a 4 and let B be the event the card is a heart. Determine $P(A \cup B)$.

$$
\begin{aligned}
P(A \cup B) & =P(A)+P(B)-P(A \text { and } B) \\
& =\frac{4}{52}+\frac{3}{52}-\frac{1}{52}
\end{aligned}
$$

Chapter 4
Tim Busken
Table of Contents
4.2 Probability

Fundamentals
Events
Disjoint Events
Sample Space
Venn Diagram
Computing
Probabilities
Complementary Events
The Rare Event Rule
4.3 The

Addition Rule
4.4 The

Multiplication
Rule
Section 4.5
The Probability of "at
least one"
Conditional Probability

Problem \#15: Pick a card at random from a shuffled deck. Let A be the event the observed card is a 4 and let B be the event the card is a heart. Determine $P(A \cup B)$.

$$
\begin{aligned}
P(A \cup B) & =P(A)+P(B)-P(A \text { and } B) \\
& =\frac{4}{52}+\frac{3}{52}-\frac{1}{52} \\
& =\frac{16}{52} \doteq 0.31
\end{aligned}
$$

Chapter 4
Tim Busken
Table of Contents
4.2 Probability Fundamentals
Events
Disioint Events
Sample Space
Venn Diagram
Computing
Probabilities
Complementary Events
The Rare Event Rule
4.3 The

Addition Rule

4.4 The

Multiplication
Rule
Section 4.5
The Probability of "at leas one
Conditional Probability
4.6 Counting

The Multiplication Rule
Factorial Rule
Permutations Rule
Combinations Rule

Problem \#16: Let A be the event the observed card is a 4 and let B be the event the card is a 10. Determine $P(A \cup B)$.

Chapter 4
Tim Busken
Table of Contents
4.2 Probability Fundamentals
Events
Disjoint Events
Sample Space

Venn Diagram

Computing
Probabilities
Complementary Events
The Rare Event Rule
4.3 The

Addition Rule

4.4 The

Multiplication Rule

Section 4.5
The Probability of at leastone
Conditional Probability
4.6 Counting

The Multiplication Rule
Factorial Rule
Permutations Rule
Combinations Rule

Problem \#16: Let A be the event the observed card is a 4 and let B be the event the card is a 10. Determine $P(A \cup B)$.

$$
P(A \cup B)=P(A)+P(B)-P(A \text { and } B)
$$

Chapter 4
Tim Busken
Table of Contents
4.2 Probability Fundamentals
Events
Disjoint Events
Sample Space

Venn Diagram

Computing
Probabilitios
Complementary Events
The Rare EventRule
4.3 The

Addition Rule

4.4 The

Multiplication
Rule
Section 4.5
The Probability of "at least one"
Conditional Probability
4.6 Counting

The Multiplication Rule
Factorial Rule
Permutations Rule
Combinations Rule

Problem \#16: Let A be the event the observed card is a 4 and let B be the event the card is a 10. Determine $P(A \cup B)$.

$$
\begin{aligned}
P(A \cup B) & =P(A)+P(B)-P(A \text { and } B) \\
& =\frac{4}{52}+\frac{4}{52}-\frac{0}{52}
\end{aligned}
$$

Chapter 4
Tim Busken
Table of Contents
4.2 Probability

Fundamentals
Events
Disjoint Events
Sample Space
Venn Diagram
Computing
Probabilites
Complementary Events
The Rare Event Rule
4.3 The

Addition Rule
4.4 The

Multiplication
Rule
Section 4.5
The Probability of "at
least one"
Conditional Probabitity
4.6 Counting

The Multiplication Rule
Factorial Rule
Permutations Rule
Combinations Rule

Problem \#16: Let A be the event the observed card is a 4 and let B be the event the card is a 10. Determine $P(A \cup B)$.

$$
\begin{aligned}
P(A \cup B) & =P(A)+P(B)-P(A \text { and } B) \\
& =\frac{4}{52}+\frac{4}{52}-\frac{0}{52} \\
& =\frac{8}{52} \doteq 0.15
\end{aligned}
$$

The Multiplication Rule

Table of

 Contents4.2 Probability

Fundamentals
Events
Disjoint Events
Sample Space
Venn Diagram
Computing
Probabilities
Complementary Events
The Rare Event Rule

4.3 The

Addition Rule
4.4 The

Definition
Two events A and B are independent if the occurrence of one does not affect the probability of the occurrence of the other. If A and B are not independent, they are said to be dependent .

Definition
Two events A and B are said to be independent if and only if either

$$
P(B \mid A)=P(B) \quad \text { or } \quad P(A \mid B)=P(A)
$$

Theorem (The Multiplication Rule)

$$
\begin{array}{lr}
P(A \text { and } B)=P(A) \cdot P(B) & \text { (if } A \text { and } B \text { are independent) } \\
P(A \text { and } B)=P(A) \cdot P(B \mid A) & \text { (if } A \text { and } B \text { are dependent) }
\end{array}
$$

Chapter 4
Tim Busken

Table of

 Contents4.2 Probability Fundamentals
Events
Disioint Events
Sample Space
Venn Diagram
Computing
Probabilities
Complementary
Events
The Rare Event Rule
4.3 The

Addition Rule
4.4 The Multiplication Rule

Section 4.5
The Probability of "at least one"
Conditional Probability
4.6 Counting

The Multiplication
Rule
Factorial Rule
Perrutations Rule
Combinations Rule

Key Concept

The basic multiplication rule is used for finding $\mathrm{P}(\mathrm{A}$ and B$)$, the probability that event A occurs in a first trial and event B occurs in a second trial.

Chapter 4
Tim Busken

Table of

 Contents4.2 Probability Fundamentals
Events
Disjoint Events
Sample Space
Venn Diagram
Computing
Probabilities
Complementary Events
The Rare Event Rule
4.3 The

Addition Rule
4.4 The Multiplication Rule

Section 4.5
The Probability of "at least one
Conditional Probability
4.6 Counting

The Multiplication
Rule
Factorial Rule
Permutations Rule
Combinations Rule

Key Concept

The basic multiplication rule is used for finding $\mathrm{P}(\mathrm{A}$ and B$)$, the probability that event A occurs in a first trial and event B occurs in a second trial.

Example: Suppose you are given a two-question quiz, where the first question is a true/false question and the second question is a multiple choice question with 5 possible answers. Suppose you guess on both questions. What is the probability that you correctly answered both questions?

Chapter 4
Tim Busken

Table of

 Contents4.2 Probability Fundamentals
Events
Disjoint Events
Sample Space
Venn Diagram
Computing
Probabilities
Complementary Events
The Rare Event Rule

4.3 The

Addition Rule
4.4 The Multiplication Rule

Section 4.5
The Probability of "at least one
Conditional Probability
4.6 Counting

The Multiplication
Rule
Factorial Rule
Permutations Rule
Combinations Rule

Key Concept

The basic multiplication rule is used for finding $\mathrm{P}(\mathrm{A}$ and B$)$, the probability that event A occurs in a first trial and event B occurs in a second trial.

Example: Suppose you are given a two-question quiz, where the first question is a true/false question and the second question is a multiple choice question with 5 possible answers. Suppose you guess on both questions. What is the probability that you correctly answered both questions?

Notice that the notation P (both correct) is equivalent to
P (the first answer is correct AND the second answer is correct).

Key Concept

The basic multiplication rule is used for finding $\mathrm{P}(\mathrm{A}$ and B$)$, the probability that event A occurs in a first trial and event B occurs in a second trial.

Example: Suppose you are given a two-question quiz, where the first question is a true/false question and the second question is a multiple choice question with 5 possible answers. Suppose you guess on both questions. What is the probability that you correctly answered both questions?

Notice that the notation P (both correct) is equivalent to P (the first answer is correct AND the second answer is correct).

Key Concept

The basic multiplication rule is used for finding $\mathrm{P}(\mathrm{A}$ and B$)$, the probability that event A occurs in a first trial and event B occurs in a second trial.

Example: Suppose you are given a two-question quiz, where the first question is a true/false question and the second question is a multiple choice question with 5 possible answers. Suppose you guess on both questions. What is the probability that you correctly answered both questions?

Notice that the notation P (both correct) is equivalent to P (the first answer is correct AND the second answer is correct). The sample space,

$$
S=\{T a, T b, T c, T d, T e, F a, F b, F c, F d, F e\},
$$

has 10 simple events.

Key Concept

The basic multiplication rule is used for finding $\mathrm{P}(\mathrm{A}$ and B$)$, the probability that event A occurs in a first trial and event B occurs in a second trial.

Example: Suppose you are given a two-question quiz, where the first question is a true/false question and the second question is a multiple choice question with 5 possible answers. Suppose you guess on both questions. What is the probability that you correctly answered both questions?

Notice that the notation P (both correct) is equivalent to P (the first answer is correct AND the second answer is correct). The sample space,

$$
S=\{T a, T b, T c, T d, T e, F a, F b, F c, F d, F e\},
$$

has 10 simple events. Only one of these is a correct outcome, so

$$
P(\text { both correct })=\frac{1}{10}=0.1
$$

Key Concept

The basic multiplication rule is used for finding $\mathrm{P}(\mathrm{A}$ and B$)$, the probability that event A occurs in a first trial and event B occurs in a second trial.

Example: Suppose you are given a two-question quiz, where the first question is a true/false question and the second question is a multiple choice question with 5 possible answers. Suppose you guess on both questions. What is the probability that you correctly answered both questions?

Notice that the notation P (both correct) is equivalent to P (the first answer is correct AND the second answer is correct). The sample space,

$$
S=\{T a, T b, T c, T d, T e, F a, F b, F c, F d, F e\},
$$

has 10 simple events. Only one of these is a correct outcome, so

$$
P(\text { both correct })=\frac{1}{10}=0.1
$$

Suppose the correct answers are T and c. We can also obtain the correct probability by multiplying the individual probabilities:

$$
\begin{aligned}
P(\text { both correct }) & =P(T \text { and } c) \\
& =P(T) \cdot P(c)=\frac{1}{2} \cdot \frac{1}{5}=\frac{1}{10}=0.1
\end{aligned}
$$

Chapter 4
Tim Busken

Table of Contents
4.2 Probability

Fundamentals
Events
Disjoint Events
Sample Space
Venn Diagram
Computing
Probabilities
Complementary
Events
The Rare Event Rule
4.3 The

Addition Rule
4.4 The

Multiplication Rule

Section 4.5
The Probability of "at
least one"
Conditional Probability

Experiment: Now pick two cards at random from a shuffled deck of playing cards.

Example: Two cards are randomly selected without replacement. Find the probability the first card is an ace and the second card is an ten.

Example: Two cards are randomly selected with replacement. Find the probability the first card is an ace and the second card is an ten.

Example: Two cards are randomly selected. Find the probability that the draw includes and ace and a ten.

Applying the Multiplication Rule

Table of Contents
4.2 Probability Fundamentals
Events
Disjoint Events
Sample Space
Venn Diagram
Computing
Probabilities
Complementary
Events
The Rare Event Pule
4.3 The

Addition Rule
4.4 The Multiplication Rule

Section 4.5
The Probability of "at least one"
Conditional Probability
4.6 Counting

The Multiplication
Rule
Factorial Rule
Permutations Rule
Combinations Rule

Applying the Multiplication Rule

Table of Contents
4.2 Probability Fundamentals
Events
Disjoint Events
Sample Space
Venn Diagram
Computing
Probabilities
Complementary
Events
The Rare Event Pule
4.3 The

Addition Rule
4.4 The Multiplication Rule

Section 4.5
The Probability of "at least one"
Conditional Probability
4.6 Counting

The Mutipilication
Rule
Factorial Rule
Permutations Rule
Combinations Rule

Applying the Multiplication Rule

Table of Contents
4.2 Probability Fundamentals
Events
Disjoint Events
Sample Space
Venn Diagram
Computing
Probabilities
Complementary
Events
The Rare Event Rule
4.3 The

Addition Rule
4.4 The Multiplication Rule

Section 4.5
The Probability of "at least one
Conditional Probability
4.6 Counting

The Multipication Rule
Factorial Rule
Permutations Rule
Combinations Rule

Applying the Multiplication Rule

Table of Contents
4.2 Probability Fundamentals
Events
Disjoint Events
Sample Space
Venn Diagram
Computing
Probabilities
Complementary
Events
The Rare Event Rule
4.3 The

Addition Rule
4.4 The Multiplication Rule

Section 4.5
The Probability of "at least one
Conditional Probability
4.6 Counting

The Multiplication Rule
Factorial Rule
Permutations Rule
Combinations Rule

Applying the Multiplication Rule

Table of
Contents
4.2 Probability Fundamentals
Events
Disjoint Events
Sample Space
Venn Diagram
Computing
Probabilities
Complementary
Events
The Rare Event Rule
4.3 The

Addition Rule
4.4 The Multiplication Rule

Section 4.5
The Probability of "at least one"
Conditional Probability

Tim Busken

Table of

 Contents4.2 Probability Fundamentals
Events
Disjoint Events
Sample Space
Venn Diagram
Computing
Probabilities
Complementary Events
The Rare Event Rule summarizes blood type and Rh types for 100 subjects.

	Blood Type				
		O	A	B	AB
Rh Type	$R h^{+}$	39	35	8	4
	$R h^{-}$	5	6	2	1

If 2 out of the 100 subjects are randomly selected, find the probability that they are both blood group O and Rh type $R h^{+}$.
(1) Assume that the selections are made with replacement.
(2) Assume that the selections are made without replacement.

Tim Busken

Table of Contents
4.2 Probability Fundamentals

Events
Disjoint Events Sample Space

Venn Diagram
Computing
Probabilities
Complementary Events
The Rare Event Rule
4.3 The

Addition Rule
4.4 The least one"
Conditional Probability
4.6 Counting

The Multiplication
Rule
Factorial Rule
Permutations Rule
Combinations Rule

Homework \#22: With one method of a procedure called acceptance sampling, a sample of items is randomly selected without rplacement and the entire batch is accepted if every item in the sample is okay. The Telektronics Company manufactured a batch of 400 back up power supply units for computers, and 8 of them are defective. If 3 of the units are randomly selected for testing, what is the probability that the entire batch will be accepted?

Key Concept

In this section, we extend our multiplication rule to the two special applications:

(1) Determine the Probability of "at least one"

(2) Conditional probability

Key Concept

Table of Contents
4.2 Probability Fundamentals

Events

Disjoint Events
Sample Space
Venn Diagram
Computing
Probabilities
Complementary Events
The Rare Event Rule

4.3 The

Addition Rule
4.4 The

Multiplication
Rule
Section 4.5

In this section, we extend our multiplication rule to the two special applications:
(1) Determine the Probability of "at least one": Find the probability that among several trials, we get at least one of some specified event.

(2) Conditional probability

Key Concept

In this section, we extend our multiplication rule to the two special applications:
(1) Determine the Probability of "at least one": Find the probability that among several trials, we get at least one of some specified event.
(2) Conditional probability: Find the probability of an event when we have additional information that some other event has already occurred.

Chapter 4
Tim Busken

Table of Contents
4.2 Probability Fundamentals
Events
Disjoint Events
Sample Space
Venn Diagram
Computing Probabilitios

The Probability of "at least one"

* "at least one" is equivalent to "one or more."

四 The complement of getting at least one item of a particular type is that you get no items of that type.

The Probability of "at least one"

Find the probability of finding at least one of some event by using these steps[?]:
(1) Use the symbol A to denote the event of getting at least one.

The Probability of "at least one"

Find the probability of finding at least one of some event by using these steps[?]:
(1) Use the symbol A to denote the event of getting at least one.
(2) Then \bar{A} represents the event of getting none of the items being considered.

The Probability of "at least one"

Find the probability of finding at least one of some event by using these steps[?]:
(1) Use the symbol A to denote the event of getting at least one.
(2) Then \bar{A} represents the event of getting none of the items being considered.
(3) Calculate the probability that none of the outcomes results in the event being considered.

The Probability of "at least one"

Find the probability of finding at least one of some event by using these steps[?]:
(1) Use the symbol A to denote the event of getting at least one.
(2) Then \bar{A} represents the event of getting none of the items being considered.
(3) Calculate the probability that none of the outcomes results in the event being considered.
(4) Subtract the result from 1. That is, evaluate

$$
P(\text { at least one })=1-P(\text { none })
$$

Table of Contents

4.2 Probability Fundamentals
Events
Disjoint Events
Sample Space
Venn Diagram
Computing
Probabilities
Complementary Events
The Rare Event Rule least one"
Conditional Probability

The Probability of "at least one"

Find the probability of finding at least one of some event by using these steps[?]:
(1) Use the symbol A to denote the event of getting at least one.
(2) Then \bar{A} represents the event of getting none of the items being considered.
(3) Calculate the probability that none of the outcomes results in the event being considered.
(4) Subtract the result from 1. That is, evaluate

$$
P(\text { at least one })=1-P(\text { none })
$$

Example: Find the probability of a couple having at least 1 girl among 4 children. Assume that boys and girls are equally likely and that the gender of one child is not influenced by the gender of any other child.

Table of Contents

4.2 Probability Fundamentals
Events
Disjoint Events
Sample Space
Venn Diagram
Computing
Probabilities
Complementary Events
The Rare Event Rule least one"
Conditional Probability

The Probability of "at least one"

Find the probability of finding at least one of some event by using these steps[?]:
(1) Use the symbol A to denote the event of getting at least one.
(2) Then \bar{A} represents the event of getting none of the items being considered.
(3) Calculate the probability that none of the outcomes results in the event being considered.
(4) Subtract the result from 1. That is, evaluate

$$
P(\text { at least one })=1-P(\text { none })
$$

Example: Find the probability of a couple having at least 1 girl among 4 children. Assume that boys and girls are equally likely and that the gender of one child is not influenced by the gender of any other child.

Find the probability of finding at least one of some event by using these steps[?]:

(1) Use the symbol A to denote the event of getting at least one.
(2) Then \bar{A} represents the event of getting none of the items being considered.
(3) Calculate the probability that none of the outcomes results in the event being considered.
(4) Subtract the result from 1 . That is, evaluate

$$
P(\text { at least one })=1-P(\text { none })
$$

Example: Find the probability of a couple having at least 1 girl among 4 children. Assume that boys and girls are equally likely and that the gender of one child is not influenced by the gender of any other child.
(1) Let $\mathrm{A}=$ at least 1 of the 4 children is a girl.

Find the probability of finding at least one of some event by using these steps[?]:

(1) Use the symbol A to denote the event of getting at least one.
(2) Then \bar{A} represents the event of getting none of the items being considered.
(3) Calculate the probability that none of the outcomes results in the event being considered.
(4) Subtract the result from 1. That is, evaluate

$$
P(\text { at least one })=1-P(\text { none })
$$

Example: Find the probability of a couple having at least 1 girl among 4 children. Assume that boys and girls are equally likely and that the gender of one child is not influenced by the gender of any other child.
(1) Let $\mathrm{A}=$ at least 1 of the 4 children is a girl.
(2) Then $\bar{A}=$ none of the 4 children are girls.
$=$ all 4 children are boys

The Probability of "at least one"

Find the probability of finding at least one of some event by using these steps[?]:

(1) Use the symbol A to denote the event of getting at least one.
(2) Then \bar{A} represents the event of getting none of the items being considered.
(3) Calculate the probability that none of the outcomes results in the event being considered.
(4) Subtract the result from 1. That is, evaluate

$$
P(\text { at least one })=1-P(\text { none })
$$

Example: Find the probability of a couple having at least 1 girl among 4 children. Assume that boys and girls are equally likely and that the gender of one child is not influenced by the gender of any other child.
(1) Let $\mathrm{A}=$ at least 1 of the 4 children is a girl.
(2) Then $\bar{A}=$ none of the 4 children are girls.
$=$ all 4 children are boys
$=$ the 1st child is a boy AND the 2nd child is a boy AND the 3rd child is a boy AND the 4th child is a boy
(3) $P(\bar{A})=P$ (the 1st child is a boy AND the 2nd child is a boy AND the 3rd child is a boy AND the 4th child is a boy)

Example: Find the probability of a couple having at least 1 girl among 4 children. Assume that boys and girls are equally likely and that the gender of one child is not influenced by the gender of any other child.
(1) Let $\mathrm{A}=$ at least 1 of the 4 children is a girl.
(2) Then $\bar{A}=$ none of the 4 children are girls.
$=$ all 4 children are boys
$=$ the 1st child is a boy AND the 2nd child is a boy AND the 3rd child is a boy AND the 4th child is a boy

The Probability of "at least one"

Find the probability of finding at least one of some event by using these steps[?]:

(1) Use the symbol A to denote the event of getting at least one.
(2) Then \bar{A} represents the event of getting none of the items being considered.
(3) Calculate the probability that none of the outcomes results in the event being considered.
(4) Subtract the result from 1 . That is, evaluate

$$
P(\text { at least one })=1-P(\text { none })
$$

Example: Find the probability of a couple having at least 1 girl among 4 children. Assume that boys and girls are equally likely and that the gender of one child is not influenced by the gender of any other child.
(1) Let $\mathrm{A}=$ at least 1 of the 4 children is a girl.
(2) Then $\bar{A}=$ none of the 4 children are girls.
$=$ all 4 children are boys
$=$ the 1st child is a boy AND the 2nd child is a boy AND the 3rd child is a boy AND the 4th child is a boy
(3) $P(\bar{A})=P$ (the 1st child is a boy AND the 2nd child is a boy AND the 3rd child is a boy AND the 4th child is a boy)
$=P($ the 1 st child is a boy $) \times P($ the 2 nd child is a boy $) \times P($ the 3 rd child is a boy $) \times P($ the 4 th child is a boy $)$

The Probability of "at least one"

Find the probability of finding at least one of some event by using these steps[?]:

(1) Use the symbol A to denote the event of getting at least one.
(2) Then \bar{A} represents the event of getting none of the items being considered.
(3) Calculate the probability that none of the outcomes results in the event being considered.
(4) Subtract the result from 1 . That is, evaluate

$$
P(\text { at least one })=1-P(\text { none })
$$

Example: Find the probability of a couple having at least 1 girl among 4 children. Assume that boys and girls are equally likely and that the gender of one child is not influenced by the gender of any other child.
(1) Let $\mathrm{A}=$ at least 1 of the 4 children is a girl.
(2) Then $\bar{A}=$ none of the 4 children are girls.
$=$ all 4 children are boys
$=$ the 1st child is a boy AND the 2nd child is a boy AND the 3rd child is a boy AND the 4th child is a boy
(3) $P(\bar{A})=P$ (the 1st child is a boy AND the 2nd child is a boy AND the 3rd child is a boy AND the 4th child is a boy)

$$
=P(\text { the } 1 \text { st child is a boy }) \times P(\text { the 2nd child is a boy }) \times P(\text { the 3rd child is a boy }) \times P(\text { the } 4 \text { th child is a boy })
$$

$$
=\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}=\frac{1}{16}=0.0625
$$

The Probability of "at least one"

Find the probability of finding at least one of some event by using these steps[?]:

(1) Use the symbol A to denote the event of getting at least one.
(2) Then \bar{A} represents the event of getting none of the items being considered.
(3) Calculate the probability that none of the outcomes results in the event being considered.
(4) Subtract the result from 1 . That is, evaluate

$$
P(\text { at least one })=1-P(\text { none })
$$

Example: Find the probability of a couple having at least 1 girl among 4 children. Assume that boys and girls are equally likely and that the gender of one child is not influenced by the gender of any other child.
(1) Let $\mathrm{A}=$ at least 1 of the 4 children is a girl.
(2) Then $\bar{A}=$ none of the 4 children are girls.
$=$ all 4 children are boys
$=$ the 1st child is a boy AND the 2nd child is a boy AND the 3rd child is a boy AND the 4th child is a boy
(3) $P(\bar{A})=P$ (the 1st child is a boy AND the 2nd child is a boy AND the 3rd child is a boy AND the 4th child is a boy) $=P($ the 1 st child is a boy $) \times P($ the 2 nd child is a boy $) \times P($ the 3rd child is a boy $) \times P($ the 4 th child is a boy $)$ $=\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}=\frac{1}{16}=0.0625$
(4) Finally, $P(A)=1-P(\bar{A})$

The Probability of "at least one"

Find the probability of finding at least one of some event by using these steps[?]:

(1) Use the symbol A to denote the event of getting at least one.
(2) Then \bar{A} represents the event of getting none of the items being considered.
(3) Calculate the probability that none of the outcomes results in the event being considered.
(4) Subtract the result from 1 . That is, evaluate

$$
P(\text { at least one })=1-P(\text { none })
$$

Example: Find the probability of a couple having at least 1 girl among 4 children. Assume that boys and girls are equally likely and that the gender of one child is not influenced by the gender of any other child.
(1) Let $\mathrm{A}=$ at least 1 of the 4 children is a girl.
(2) Then $\bar{A}=$ none of the 4 children are girls.

$$
=\text { all } 4 \text { children are boys }
$$

$=$ the 1st child is a boy AND the 2nd child is a boy AND the 3rd child is a boy AND the 4th child is a boy
(3) $P(\bar{A})=P$ (the 1st child is a boy AND the 2nd child is a boy AND the 3rd child is a boy AND the 4th child is a boy)

$$
=P(\text { the } 1 \text { st child is a boy }) \times P(\text { the } 2 \text { nd child is a boy }) \times P(\text { the 3rd child is a boy }) \times P(\text { the } 4 \text { th child is a boy })
$$

$$
=\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}=\frac{1}{16}=0.0625
$$

(4) Finally, $P(A)=1-P(\bar{A})=1-0.0625$

The Probability of "at least one"

Find the probability of finding at least one of some event by using these steps[?]:

(1) Use the symbol A to denote the event of getting at least one.
(2) Then \bar{A} represents the event of getting none of the items being considered.
(3) Calculate the probability that none of the outcomes results in the event being considered.
(4) Subtract the result from 1 . That is, evaluate

$$
P(\text { at least one })=1-P(\text { none })
$$

Example: Find the probability of a couple having at least 1 girl among 4 children. Assume that boys and girls are equally likely and that the gender of one child is not influenced by the gender of any other child.
(1) Let $\mathrm{A}=$ at least 1 of the 4 children is a girl.
(2) Then $\bar{A}=$ none of the 4 children are girls.
$=$ all 4 children are boys
$=$ the 1st child is a boy AND the 2nd child is a boy AND the 3rd child is a boy AND the 4th child is a boy
(3) $P(\bar{A})=P$ (the 1st child is a boy AND the 2nd child is a boy AND the 3rd child is a boy AND the 4th child is a boy) $=P($ the 1 st child is a boy $) \times P($ the 2 nd child is a boy $) \times P($ the 3rd child is a boy $) \times P($ the 4 th child is a boy $)$ $=\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}=\frac{1}{16}=0.0625$
(4) Finally, $P(A)=1-P(\bar{A})=1-0.0625=0.9375$.

Worksheet

Example: A study conducted at a certain college shows that 59% of the school's graduates find a job in their chosen field within a year after graduation. Find the probability that among 6 randomly selected graduates, at least one finds a job in his or her chosen field within a year of graduating.

Example: In a batch of 8,000 clock radios 6\% are defective. A sample of 8 clock radios is randomly selected without replacement from the 8,000 and tested. The entire batch will be rejected if at least one of those tested is defective. What is the probability that the entire batch will be rejected?

Conditional Probability

Definition

A conditional probability of an event is a probability obtained with the additional information that some other event has already occurred. $P(B \mid A)$ denotes the conditional probability of event B occurring, given that event A has already occurred, and it can be found by dividing the probability of events A and B both occurring by the probability of event A :

$$
P(B \mid A)=\frac{P(A \text { and } B)}{P(A)}
$$

Table 4-1 Results from Experiments with Polygraph Instruments

Positive Test Result	No (Did Not Lie)	Yes (Lied)
(The polygraph test indicated that the subject lied.)	15	42
(false positive)	(true positive)	
Negative Test Result (The polygraph test indicated that the subject did not lie.)	32 (true negative)	9 (false negative)

Worksheet

	Nonsmoker	Light Smoker	Heavy Smoker	Total
Men	306	74	66	446
Women	345	68	81	494
Total	651	142	147	940

Worksheet

Example: Suppose one of the 940 subjects is chosen at random. Compute the following probabilities:
a. $\quad P(N \mid F)$
b. $\quad P(F \mid N)$
c. $\quad P(H \cup M)$
d. $\quad P(M \cap L)$
e. $\quad P$ (the person selected is a smoker)
f. $\quad P(F \cap \bar{H})$

	Nonsmoker	Light Smoker	Heavy Smoker	Total
Men	306	74	66	446
Women	345	68	81	494
Total	651	142	147	940

Worksheet

Example: Two people are selected from the group. What is the probability that both people are smokers?

4.6 Counting Rules

Table of Contents
4.2 Probability Fundamentals
Events
Disjoint Events
Sample Space
Venn Diagram
Computing
Probabilities
Complementary
Events
The Rare Event Rule
4.3 The

Addition Rule
4.4 The

Multiplication
Rule
Section 4.5
The Probability of "at least one"
Conditional Probability
4.6 Counting

The Multiplication
Rule
Factorial Rule
Permutations Rule
Combinations Rule

Counting the number of simple events in a sample space is one of the hardest problems to deal with when finding probabilities.

4.6 Counting Rules

Table of Contents
4.2 Probability Fundamentals
Events
Disjoint Events
Sample Space
Venn Diagram
Computing
Probabilities
Complementary Events
The Rare Event Rule

4.3 The

Addition Rule
1.4 The

Multiplication
Rule
Section 4.5
The Probability of "at least one
Conditional Probability

Counting the number of simple events in a sample space is one of the hardest problems to deal with when finding probabilities.

The Multiplication Rule
For a sequence of two events in which the first event can occur m ways and the second event can occur n ways, the events together can occur a total of $m \cdot n$ ways.

4.6 Counting Rules

Table of Contents
4.2 Probability Fundamentals
Events
Disjoint Events
Sample Space
Venn Diagram
Computing
Probabilities
Complementary
Events
The Rare Event Rule

Counting the number of simple events in a sample space is one of the hardest problems to deal with when finding probabilities.

The Multiplication Rule

For a sequence of two events in which the first event can occur m ways and the second event can occur n ways, the events together can occur a total of $m \cdot n$ ways.

Example: Suppose you are given a two-question quiz, where the first question is a true/false question and the second question is a multiple choice question with 5 possible answers. Suppose you guess on both questions. How many simple events are in the sample space?

4.6 Counting Rules

Counting the number of simple events in a sample space is one of the hardest problems to deal with when finding probabilities.

The Multiplication Rule

For a sequence of two events in which the first event can occur m ways and the second event can occur n ways, the events together can occur a total of $m \cdot n$ ways.

Example: Suppose you are given a two-question quiz, where the first question is a true/false question and the second question is a multiple choice question with 5 possible answers. Suppose you guess on both questions. How many simple events are in the sample space?

4.6 Counting Rules

Counting the number of simple events in a sample space is one of the hardest problems to deal with when finding probabilities.

The Multiplication Rule

For a sequence of two events in which the first event can occur m ways and the second event can occur n ways, the events together can occur a total of $m \cdot n$ ways.

Example: Suppose you are given a two-question quiz, where the first question is a true/false question and the second question is a multiple choice question with 5 possible answers. Suppose you guess on both questions. How many simple events are in the sample space?

2

How many ways can you guess at a true/false question?

4.6 Counting Rules

Counting the number of simple events in a sample space is one of the hardest problems to deal with when finding probabilities.

The Multiplication Rule

For a sequence of two events in which the first event can occur m ways and the second event can occur n ways, the events together can occur a total of $m \cdot n$ ways.

Example: Suppose you are given a two-question quiz, where the first question is a true/false question and the second question is a multiple choice question with 5 possible answers. Suppose you guess on both questions. How many simple events are in the sample space?

How many ways can you guess at the multiple choice question?

4.6 Counting Rules

Counting the number of simple events in a sample space is one of the hardest problems to deal with when finding probabilities.

The Multiplication Rule

For a sequence of two events in which the first event can occur m ways and the second event can occur n ways, the events together can occur a total of $m \cdot n$ ways.

Example: Suppose you are given a two-question quiz, where the first question is a true/false question and the second question is a multiple choice question with 5 possible answers. Suppose you guess on both questions. How many simple events are in the sample space?

$$
\frac{2 \cdot 5}{\text { maomen }}=10
$$

4.6 Counting Rules

Counting the number of simple events in a sample space is one of the hardest problems to deal with when finding probabilities.

The Multiplication Rule

For a sequence of two events in which the first event can occur m ways and the second event can occur n ways, the events together can occur a total of $m \cdot n$ ways.

Example: Suppose you are given a two-question quiz, where the first question is a true/false question and the second question is a multiple choice question with 5 possible answers. Suppose you guess on both questions. How many simple events are in the sample space?

The sample space, $S=\{T a, T b, T c, T d, T e, F a, F b, F c, F d, F e\}$, has 10 simple events.

4．6 Counting Rules

Counting the number of simple events in a sample space is one of the hardest problems to deal with when finding probabilities．

The Multiplication Rule

For a sequence of two events in which the first event can occur m ways and the second event can occur n ways，the events together can occur a total of $m \cdot n$ ways．

Example：Suppose you roll a pair of dice and record the sum of the two numbers that land on the upper faces of the die．How many simple events are in the sample space？

$\begin{gathered} \text { Roll } \\ 2 \end{gathered}$	$\bullet \cdot$						$\begin{gathered} \text { Probabilit) } \\ \frac{1}{36} \end{gathered}$
3	－	© \square°					$\frac{2}{36}$
4	－	－	＊ 0				$\frac{3}{36}$
5	－9	鮀	－	© ${ }^{\circ}$			${ }_{30}^{50}$
6	－ ® $^{\text {c }}$	®－1	（ ${ }^{\text {c }}$	（®）	－		$\frac{5}{36}$
7	－®1	ต๐	（\％）	（1）	（1）	（13）	$\frac{6}{36}$
8	（13）	M	（1．）	（1）	（ํ）		${ }^{5} 5$
9	（3）	ต®	（20）	（ ® $^{\text {c }}$			${ }^{4}$
10	㽤	ต	（1）3				${ }_{3}^{36}$
11	자자	（1）					$\frac{2}{36}$
12	田						$\frac{1}{36}$

4.6 Counting Rules

Counting the number of simple events in a sample space is one of the hardest problems to deal with when finding probabilities.

The Multiplication Rule

For a sequence of two events in which the first event can occur m ways and the second event can occur n ways, the events together can occur a total of $m \cdot n$ ways.

Example: Suppose you roll a pair of dice and record the sum of the two numbers that land on the upper faces of the die. How many simple events are in the sample space?

$\begin{gathered} \text { Roll } \\ 2 \end{gathered}$	0						$\begin{aligned} & \text { Probability } \\ & \frac{1}{36} \end{aligned}$
3	0	®0)					$\frac{2}{36}$
4	-	방	$0 \cdot$				$\frac{3}{36}$
5	08	(1)	0	®			$\frac{4}{36}$
6	-80	ญ앙	(1)	®	8		$\frac{5}{36}$
7	8 (1i)	(18)	80	®\%	(1)	아앙	$\frac{6}{36}$
8	(10)	(®)	장앙	(8)8	(9\%		$\frac{5}{36}$
9	¢ ${ }^{\text {P1 }}$	(1)	8	(1)			$\frac{4}{36}$
10	(17	(10\%	(2)				$\frac{3}{36}$
11	8 87	(1)					$\frac{2}{36}$
12	(19						$\frac{1}{36}$

How many ways can the first die land?

4．6 Counting Rules

Counting the number of simple events in a sample space is one of the hardest problems to deal with when finding probabilities．

The Multiplication Rule

For a sequence of two events in which the first event can occur m ways and the second event can occur n ways，the events together can occur a total of $m \cdot n$ ways．

Example：Suppose you roll a pair of dice and record the sum of the two numbers that land on the upper faces of the die．How many simple events are in the sample space？

$\begin{gathered} \text { Roll } \\ 2 \end{gathered}$	\square						$\begin{gathered} \text { Probability } \\ \frac{1}{36} \end{gathered}$
3	0	\bigcirc					$\frac{2}{36}$
4	－ 0	방	80				$\frac{3}{36}$
5	98	（1）	0	θ			$\frac{4}{36}$
6	－8）	®0	（1）	－	$0 \cdot$		$\frac{5}{36}$
7	（17）	（1）	80	©0\％	（1）	803	$\frac{6}{36}$
8	$\triangle 1$	（1）	장앙	앙	（\％）		$\frac{5}{36}$
9	¢ 9	ต®	자앙	（1）			$\frac{4}{36}$
10	（17	（10	囚8\％				$\frac{3}{36}$
11	囚17	（1）					$\frac{2}{36}$
12	田						$\frac{1}{36}$

How many ways can the second die land？

4.6 Counting Rules

Counting the number of simple events in a sample space is one of the hardest problems to deal with when finding probabilities.

The Multiplication Rule

For a sequence of two events in which the first event can occur m ways and the second event can occur n ways, the events together can occur a total of $m \cdot n$ ways.

Example: Suppose you roll a pair of dice and record the sum of the two numbers that land on the upper faces of the die. How many simple events are in the sample space?

$\begin{gathered} \text { Roll } \\ 2 \end{gathered}$	0						$\begin{aligned} & \text { Probability } \\ & \frac{1}{36} \end{aligned}$
3	0	®0)					$\frac{2}{36}$
4	-	방	$0 \cdot$				$\frac{3}{36}$
5	08	(1)	0	®			$\frac{4}{36}$
6	-80	ญ앙	(1)	®	8		$\frac{5}{36}$
7	8 (1i)	(18)	80	®\%	(1)	아앙	$\frac{6}{36}$
8	(10)	(®)	장앙	(8)8	(9\%		$\frac{5}{36}$
9	¢ ${ }^{\text {P1 }}$	(1)	8	(1)			$\frac{4}{36}$
10	(17	(10\%	(2)				$\frac{3}{36}$
11	8 87	(1)					$\frac{2}{36}$
12	(19						$\frac{1}{36}$

4.6 Counting Rules

Counting the number of simple events in a sample space is one of the hardest problems to deal with when finding probabilities.

The Multiplication Rule

For a sequence of two events in which the first event can occur m ways and the second event can occur n ways, the events together can occur a total of $m \cdot n$ ways.

Example: Suppose you roll a pair of dice and record the sum of the two numbers that land on the upper faces of the die. How many simple events are in the sample space?

The sample space, has 36 simple events.

4.6 Counting Rules

The Extended Multiplication Rule

For a sequence of k events in which the first event can occur n_{1} ways, the second event can occur n_{2} ways, ..., the k th event can occur n_{k} ways, the number of ways to carry out the the sequence of events is the product

$$
\underbrace{n_{1} \cdot n_{2} \cdot n_{3} \cdots n_{k}}_{k \text { factors }}
$$

Example: Suppose a couple plans to have three children. How many simple events are in the sample space?

4.6 Counting Rules

The Extended Multiplication Rule

For a sequence of k events in which the first event can occur n_{1} ways, the second event can occur n_{2} ways, ..., the k th event can occur n_{k} ways, the number of ways to carry out the the sequence of events is the product

$$
\underbrace{n_{1} \cdot n_{2} \cdot n_{3} \cdots n_{k}}_{k \text { factors }}
$$

Example: Suppose a couple plans to have three children. How many simple events are in the sample space?

4.6 Counting Rules

Table of Contents
4.2 Probability Fundamentals
Events
Disjoint Events
Sample Space
Venn Diagram
Computing
Probabilities
Complementary Events
The Rare Event Rule

4.3 The

Addition Rule
4.4 The

Multiplication
Rule
Section 4.5
The Probability of "at least one
Conditional Probability
4.6 Counting

The Multiplication Rule
Factorial Rule Permutations Rule Combinations Rule

Example: Suppose you have 3 different cars and a 3-car garage. How many different ways can you arrange (order) the way you park the cars in your garage?

$$
\overline{\text { garage } 1} \overline{\text { garage } 2} \overline{\text { garage } 3}
$$

4.6 Counting Rules

Table of Contents
4.2 Probability Fundamentals
Events
Disjoint Events
Sample Space
Venn Diagram
Computing
Probabilities
Complementary Events
The Rare Event Rule
4.3 The

Addition Rule
4.4 The

Multiplication
Rule
Section 4.5
The Probability of "at least one
Conditional Probability
4.6 Counting

The Multiplication Rule
Factorial Rule
Permutations Rule
Combinations Rule

Example: Suppose you have 3 different cars and a 3-car garage. How many different ways can you arrange (order) the way you park the cars in your garage?

$$
\overline{\text { garage } 1} \overline{\text { garage } 2} \overline{\text { garage } 3}
$$

How many choices of cars do you have for garage 1?

4.6 Counting Rules

Table of Contents
4.2 Probability Fundamentals
Events
Disjoint Events
Sample Space
Venn Diagram
Computing
Probabilities
Complementary Events
The Rare Event Rule

4.3 The

Addition Rule
4.4 The

Multiplication
Rule
Section 4.5
The Probability of "at least one
Conditional Probability
4.6 Counting

The Multiplication Rule
Factorial Rule
Permutations Rule
Combinations Rule

Example: Suppose you have 3 different cars and a 3-car garage. How many different ways can you arrange (order) the way you park the cars in your garage?

4.6 Counting Rules

Table of Contents
4.2 Probability Fundamentals
Events
Disjoint Events
Sample Space
Venn Diagram
Computing
Probabilities
Complementary Events
The Rare Event Rule least one

Example: Suppose you have 3 different cars and a 3-car garage. How many different ways can you arrange (order) the way you park the cars in your garage?

$$
\frac{3}{\text { garage 1 }} \frac{}{\text { garage 2 }} \quad \begin{aligned}
& \text { garage } 3
\end{aligned}
$$

You selected a car and parked it in garage 1. Now how many choices of cars do you have to park in your 2nd garage?

4.6 Counting Rules

Table of Contents
4.2 Probability Fundamentals
Events
Disjoint Events
Sample Space
Venn Diagram
Computing
Probabilities
Complementary
Events
The Rare Event Rule

4.3 The

Addition Rule
4.4 The

Multiplication
Rule
Section 4.5
The Probability of "at least one
Conditional Probability
4.6 Counting

The Multiplication Rule
Factorial Rule
Permutations Rule
Combinations Rule

Example: Suppose you have 3 different cars and a 3-car garage. How many different ways can you arrange (order) the way you park the cars in your garage?

$$
\frac{3}{\text { garage } 1} \cdot \frac{2}{\text { garage } 2} \frac{}{\text { garages }}
$$

4.6 Counting Rules

Table of Contents
4.2 Probability Fundamentals
Events
Disjoint Events
Sample Space
Venn Diagram
Computing
Probabilities
Complementary Events
The Rare Event Rule least one

Example: Suppose you have 3 different cars and a 3-car garage. How many different ways can you arrange (order) the way you park the cars in your garage?

$$
\frac{3}{\text { garage } 1} \cdot \frac{2}{\text { garage } 2} \frac{}{\text { garage } 3}
$$

You selected a car and parked it in the 2nd garage. Now how many choices of cars do you have left to park in your 3rd garage?

4.6 Counting Rules

Table of Contents
4.2 Probability Fundamentals
Events
Disjoint Events
Sample Space
Venn Diagram
Computing
Probabilities
Complementary
Events
The Rare Event Rule

4.3 The

Addition Rule
4.4 The

Multiplication
Rule
Section 4.5
The Probability of "at least one

Conditional Probability
4.6 Counting

The Multiplication Rule
Factorial Rule
Permutations Rule
Combinations Rule

Example: Suppose you have 3 different cars and a 3-car garage. How many different ways can you arrange (order) the way you park the cars in your garage?

$$
\frac{3}{\text { garage } 1} \cdot \frac{2}{\text { garage } 2} \cdot \frac{1}{\text { garages }}
$$

4.6 Counting Rules

Table of Contents
4.2 Probability Fundamentals
Events
Disjoint Events
Sample Space
Venn Diagram
Computing
Probabilities
Complementary Events
The Rare Event Rule

Example: Suppose you have 3 different cars and a 3-car garage. How many different ways can you arrange (order) the way you park the cars in your garage?

$$
\frac{3}{\text { garage1 }} \cdot \frac{2}{\text { garage }} \cdot \frac{1}{\text { garage } 3}=6
$$

According to the Multiplication Rule, there are six different parking arrangements.

4.6 Counting Rules

Table of Contents
4.2 Probability Fundamentals
Events
Disjoint Events
Sample Space
Venn Diagram
Computing
Probabilities
Complementary Events
The Rare Event Rule

4.3 The

Addition Rule
1.4 The

Multiplication
Rule
Section 4.5
The Probability of "at least one"
Conditional Probability
4.6 Counting

The Multiplication Rule
Factorial Rule
Permutations Rule
Combinations Rule

Example: Suppose you have 3 different cars and a 3-car garage. How many different ways can you arrange (order) the way you park the cars in your garage?

$$
\frac{3}{\text { garage } 1} \cdot \frac{2}{\text { garage } 2} \cdot \frac{1}{\text { garage } 3}=6
$$

Notice this was also equal to 3 factorial.

4.6 Counting Rules

Table of

 Contents4.2 Probability

Fundamentals
Events
Disjoint Events
Sample Space
Venn Diagram
Computing
Probabilities
Complementary
Events
The Rare Event Rule

4.3 The

Addition Rule
4.4 The

Example: Suppose you have 3 different cars and a 3-car garage. How many different ways can you arrange (order) the way you park the cars in your garage?

$$
\frac{3}{\text { garage } 1} \cdot \frac{2}{\text { garage } 2} \cdot \frac{1}{\text { garage } 3}=6
$$

Notice this was also equal to 3 factorial.

Definition
The factorial symbol! denotes the product of decreasing positive whole numbers. For example,

$$
4!=4 \cdot 3 \cdot 2 \cdot 1=24
$$

By special definition, $0!=1$.

Table of Contents
4.2 Probability Fundamentals

Events
Disjoint Events
Sample Space
Venn Diagram
Computing
Probabilities
Complementary
Events
The Rare Event Rule
4.3 The

Addition Rule
4.4 The

Multiplication
Rule
Section 4.5
The Probability of "at least one"
Conditional Probability
4.6 Counting

The Multiplication
Rule
Factorial Rule
Permutations Rule
Combinations Rule

Definition (Factorial Rule)

A collection of n different items can be arranged in order $n!$ different ways.
(This factorial rule reflects the fact that the first item may be selected in n different ways, the second item may be selected in $n-1$ ways, and so on.)

Table of

 Contents4.2 Probability Fundamentals
Events
Disjoint Events
Sample Space
Venn Diagram
Computing
Probabilities
Complementary Events
The Rare Event Rule

4.3 The

Addition Rule
4.4 The

Definition (Factorial Rule)

A collection of n different items can be arranged in order $n!$ different ways.
(This factorial rule reflects the fact that the first item may be selected in n different ways, the second item may be selected in $n-1$ ways, and so on.)

Example: Suppose you own a restaurant that has a delivery service. Suppose you need your driver to make 5 local deliveries in the next hour. How many different routes are possible?

Table of

 Contents4.2 Probability Fundamentals
Events
Disjoint Events
Sample Space
Venn Diagram
Computing
Probabilities
Complementary Events
The Rare Event Rule

4.3 The

Addition Rule

Definition (Factorial Rule)

A collection of n different items can be arranged in order n ! different ways.
(This factorial rule reflects the fact that the first item may be selected in n different ways, the second item may be selected in $n-1$ ways, and so on.)

Example: Suppose you own a restaurant that has a delivery service. Suppose you need your driver to make 5 local deliveries in the next hour. How many different routes are possible?

$$
5!=5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=120
$$

Chapter 4
Tim Busken

Table of

 Contents4.2 Probability Fundamentals

Events
Disjoint Events
Sample Space
Venn Diagram
Computing
Probabilities
Complementary
Events
The Rare Event Rule
4.3 The

Addition Rule
4.4 The

Multiplication
Rule
Section 4.5
The Probability of "at least one"
Conditional Probability
4.6 Counting

The Multiplication
Rule
Factorial Rule
Permutations Rule
Combinations Rule

Definition (Factorial Rule)
A collection of n different items can be arranged in order $n!$ different ways.

Table of Contents
4.2 Probability Fundamentals
Events
Disjoint Events
Sample Space
Venn Diagram
Computing
Probabilities
Complementary
Events
The Rare Event Rule
4.3 The

Addition Rule
4.4 The

Multiplication
Rule
Section 4.5
The Probability of "at least one
Conditional Probability
4.6 Counting

The Multiplication
Rule
Factorial Rule
Permutations Rule
Combinations Rule

Definition (Factorial Rule)
A collection of n different items can be arranged in order $n!$ different ways.

Sometimes we have n different items to arrange, but we need to select some of them instead of all of them.

Table of Contents
4.2 Probability

Fundamentals
Events
Disjoint Events
Sample Space
Venn Diagram
Computing
Probabilitios
Complementary Events
The Rare Event Rule
4.3 The

Addition Rule
4.4 The

Multiplication
Rule
Section 4.5

Definition (Factorial Rule)

A collection of n different items can be arranged in order n ! different ways.

Sometimes we have n different items to arrange, but we need to select some of them instead of all of them.

For instance, suppose a television producer has four prizes to give away to a studio audience of 50 people. The first prize is a car, the second prize is a $\$ 6000$ TV, third prize is a $\$ 2500$ gift certificate to the mall, and fourth prize is $\$ 500$ cash. How many different ways can the producer select the four prize winners?

Table of

 Contents4.2 Probability Fundamentals Events
Disjoint Events
Sample Space
Venn Diagram
Computing
Probabilitios
Complementary Events
The Rare Event Rule

Definition (Factorial Rule)

A collection of n different items can be arranged in order $n!$ different ways.

Sometimes we have n different items to arrange, but we need to select some of them instead of all of them.

For instance, suppose a television producer has four prizes to give away to a studio audience of 50 people. The first prize is a car, the second prize is a $\$ 6000 \mathrm{TV}$, third prize is a $\$ 2500$ gift certificate to the mall, and fourth prize is $\$ 500$ cash. How many different ways can the producer select the four prize winners?
$50 \cdot 49 \cdot 48 \cdot 47=5,527,000 \quad$ using the Multiplication Rule

Definition (Factorial Rule)

A collection of n different items can be arranged in order n ! different ways.

Sometimes we have n different items to arrange, but we need to select some of them instead of all of them.

For instance, suppose a television producer has four prizes to give away to a studio audience of 50 people. The first prize is a car, the second prize is a $\$ 6000$ TV, third prize is a $\$ 2500$ gift certificate to the mall, and fourth prize is $\$ 500$ cash. How many different ways can the producer select the four prize winners?
$50 \cdot 49 \cdot 48 \cdot 47=5,527,000 \quad$ using the Multiplication Rule
Another way to obtain the same result is to evaluate $\frac{50!}{46!}$, since

Definition (Factorial Rule)

A collection of n different items can be arranged in order n ! different ways.

Sometimes we have n different items to arrange, but we need to select some of them instead of all of them.

For instance, suppose a television producer has four prizes to give away to a studio audience of 50 people. The first prize is a car, the second prize is a $\$ 6000$ TV, third prize is a $\$ 2500$ gift certificate to the mall, and fourth prize is $\$ 500$ cash. How many different ways can the producer select the four prize winners?

$$
50 \cdot 49 \cdot 48 \cdot 47=5,527,000 \quad \text { using the Multiplication Rule }
$$

Another way to obtain the same result is to evaluate $\frac{50!}{46!}$, since

$$
\frac{50!}{46!}=\frac{50 \cdot 49 \cdot 48 \cdot 47 \cdot 46!}{46!}=50 \cdot 49 \cdot 48 \cdot 47=5,527,000
$$

Table of

 Contents4.2 Probability Fundamentals Events
Disjoint Events
Sample Space
Venn Diagram
Computing
Probabilities
Complementary Events
The Rare Event Rule
4.3 The

Addition Rule
4.4 The

Multiplication
Rule
Section 4.5

Definition (Factorial Rule)

A collection of n different items can be arranged in order $n!$ different ways.

Sometimes we have n different items to arrange, but we need to select some of them instead of all of them.

For instance, suppose a television producer has four prizes to give away to a studio audience of 50 people. The first prize is a car, the second prize is a $\$ 6000 \mathrm{TV}$, third prize is a $\$ 2500$ gift certificate to the mall, and fourth prize is $\$ 500$ cash. How many different ways can the producer select the four prize winners?

$$
50 \cdot 49 \cdot 48 \cdot 47=5,527,000 \quad \text { using the Multiplication Rule }
$$

Another way to obtain the same result is to evaluate $\frac{50!}{46!}$, since

$$
\frac{50!}{46!}=\frac{50 \cdot 49 \cdot 48 \cdot 47 \cdot 46!}{46!}=50 \cdot 49 \cdot 48 \cdot 47=5,527,000
$$

This result is generalized by the permutations rule: if we have n different items available and we want to select r of them, then the number of different orderings is $n!/(n-r)$!

Permutations Rule (when items are all different)

Definition (Permutations Rule)

Requirements:
(1) There are n different items available, with none of the items identical to any other item under consideration.
(2) We select r of the n items (without replacement).
(3) The ordering of the selections matter.

The number of permutations (or sequences) of r items selected from n available items (without replacement), denoted ${ }_{n} P_{r}$, is

$$
{ }_{n} P_{r}=\frac{n!}{(n-r)!}
$$

Example: There are 13 members on a board of directors. How many different ways can the group select a president, vice-president and treasurer?

Permutations Rule (when items are all different)

Definition (Permutations Rule)

Requirements:
(1) There are n different items available, with none of the items identical to any other item under consideration.
(2) We select r of the n items (without replacement).
(3) The ordering of the selections matter.

The number of permutations (or sequences) of r items selected from n available items (without replacement), denoted ${ }_{n} P_{r}$, is

$$
{ }_{n} P_{r}=\frac{n!}{(n-r)!}
$$

Example: There are 13 members on a board of directors. How many different ways can the group select a president, vice-president and treasurer?

$$
{ }_{13} P_{3}=\frac{13!}{(13-3)!}=\frac{13 \cdot 12 \cdot 11 \cdot 10!}{10!}=1716
$$

Combinations Rule

Table of Contents
4.2 Probability

Fundamentals
Events
Disjoint Events
Sample Space
Venn Diagram
Computing
Probabilities
Complementary Events
The Rare Event Rule

Definition (Combinations Rule)

Requirements:
(1) There are n different items available.
(2) We select r of the n items (without replacement).
(3) The ordering of the selections does not matter.

The number of combinations of r items selected from n available items (without replacement), denoted ${ }_{n} C_{r}$, is

$$
{ }_{n} C_{r}=\frac{n!}{(n-r)!r!}
$$

Example: There are 13 members on a board of directors. How many different ways can the group form a subcommittee with 3 members?

Combinations Rule

Definition (Combinations Rule)

Requirements:
(1) There are n different items available.
(2) We select r of the n items (without replacement).
(3) The ordering of the selections does not matter.

The number of combinations of r items selected from n available items (without replacement), denoted ${ }_{n} C_{r}$, is

$$
{ }_{n} C_{r}=\frac{n!}{(n-r)!r!}
$$

Example: There are 13 members on a board of directors. How many different ways can the group form a subcommittee with 3 members?

$$
{ }_{13} C_{3}=\frac{13!}{(13-3)!3!}=\frac{13 \cdot 12 \cdot 11 \cdot 10!}{10!\cdot 3!}=286
$$

Combinations Rule

Table of Contents
4.2 Probability

Fundamentals
Events
Disjoint Events
Sample Space
Venn Diagram
Computing
Probabilities
Complementary Events
The Rare Event Rule
4.3 The

Addition Rule
4.4 The

Multiplication
Rule
Section 4.5
The Probability of 'at least one"
Conditional Probability
4.6 Counting

The Multipication
Rule
Factorial Rule

Definition (Combinations Rule)

Requirements:
(1) There are n different items available.
(2) We select r of the n items (without replacement).
(3) The ordering of the selections does not matter.

The number of combinations of r items selected from n available items (without replacement), denoted ${ }_{n} C_{r}$, is

$$
{ }_{n} C_{r}=\frac{n!}{(n-r)!r!}
$$

Example: suppose a television producer has four prizes to give away to a studio audience of 50 people. The four prizes are all the same, a $\$ 500$ gift certificate to the mall. How many different ways can the producer select the four prize winners?

Combinations Rule

Definition (Combinations Rule)

Requirements:
(1) There are n different items available.
(2) We select r of the n items (without replacement).
(3) The ordering of the selections does not matter.

The number of combinations of r items selected from n available items (without replacement), denoted ${ }_{n} C_{r}$, is

$$
{ }_{n} C_{r}=\frac{n!}{(n-r)!r!}
$$

Example: suppose a television producer has four prizes to give away to a studio audience of 50 people. The four prizes are all the same, a $\$ 500$ gift certificate to the mall. How many different ways can the producer select the four prize winners?

$$
{ }_{50} C_{4}=\frac{50!}{(50-4)!4!}=\frac{50!}{46!\cdot 4!}=\frac{50 \cdot 49 \cdot 48 \cdot 47 \cdot 46!}{46!\cdot 4!}=\frac{5,527,000}{24}=230,300
$$

Chapter 4

Tim Busken

Table of Contents
4.2 Probability

Fundamentals
Events
Disjoint Events
Sample Space
Venn Diagram
Computing
Probabilities
Complementary
Events
The Rare Event Rule
4.3 The

Addition Rule
4.4 The

Multiplication Rule

Section 4.5
The Probability of "at least one"

Conditional Probability
4.6 Counting

The Multiplication Rule
Factorial Rule Permutations Rule Combinations Rule

