Tim Busken The Binomial Distribution

Name: _____

Many probability experiments have only two outcomes. For example, when you guess at a multiple choice question, your answer is either right or wrong. A medical treatment can be considered effective or ineffective. When a coin is tossed it can land either heads or tails. Situations like these are called binomial experiments.

Binomial experiments have the following properties:

- 1. The procedure has a fixed number of trials.
- 2. The trials must be independent. (The outcome of any individual trial doesnt affect the probabilities in the other trials.)
- 3. Each trial must have only two possible outcomes (commonly referred to as success and failure).
- 4. The probability of a success remains the same in all trials.

The outcomes of a binomial experiment and the corresponding probabilities of these outcomes are called a *binomial probability distribution*.

Notation for Binomial Probability Distributions:

S and F (success and failure) denote the two possible categories of all outcomes; p and q will denote the probabilities of S and F, respectively.

P(S) = p	(p = probability of success)
P(F) = 1 - p = q	(q = probability of failure)
n	denotes the fixed number of trials.
x	denotes a specific number of successes in n trials,
	so x can be any whole number between 0 and n ,
	inclusive.
p	denotes the probability of success in one of the n
	trials.
q	denotes the probability of failure in one of the n
	trials.
P(x)	denotes the probability of getting exactly x succ-
	esses among the n trials.

The Binomial Probability Formula

$$P(x) = \left({}_{n}C_{x} \right) \cdot p^{x} \cdot q^{n-x}$$

for x = 0, 1, 2, ..., n, and recall that ${}_{n}C_{x} = \frac{n!}{(n-x)! \cdot x!}$.

Example: Use the binomial probability formula to find the probability of X successes if n = 12, p = 0.75 and X = 5. Show your work to get full credit.

1. **Example**: A multiple choice test has 5 questions each of which has 5 possible answers, only one of which is correct. If Judy, who forgot to study for the test, guesses on all questions, what is the probability that she will answer exactly 2 questions correctly?

Solution: The distribution of probabilities for the situation follows the Binomial Distribution, since the following is true.

- ✓ There are n = 5 trials (questions being answered).
- \checkmark The trials are independent. The outcome from answering one question doesn't affect the probabilities associated with answering the other questions.
- $\checkmark\,$ Each trial (answering a question) has only two possible outcomes, with success being categorized as a correct answer.
- ✓ The probability for a success, $p = \frac{1}{5} = 0.2$, remains the same in all 10 trials.

We want to find x = 2 success from n = 5 trials with p = 0.2 and q = 1 - p = 0.8. Using the binomial formula, the probability of 2 success is

$$P(x = 2) = ({}_{n}C_{2}) \cdot p^{2} \cdot q^{n-2}$$
$$= ({}_{5}C_{2}) \cdot (0.2)^{2} \cdot (0.8)^{3}$$
$$= 10 \cdot (0.2)^{2} \cdot (0.8)^{3}$$
$$= 0.2048$$

Rationale for Using the Binomial Formula

There are ${}_5C_2 = 10$ different ways to get two answers correct from five questions. The sample space for the binomial experiment contains pairs of numbers corresponding to *which* two questions Judy gets correct.

Sample Space	#1, #1,	$\#2 \\ \#3$	#2, #2,	$#3 \\ #4$	#3, #3,	$#4 \\ #5$	#4,	#5
Sumple Space	#1, #1,	$#4 \\ #5$	#2,	#5				

The probability is the same for any one of the pairs to occur and is equal to $(0.2)^2 \cdot (0.8)^3 = 0.02048$. For example, P(only questions #1 and #2 are correct) =

= P(#1 is correct AND #2 is correct AND #3 is wrong AND #4 is wrong AND #5 is wrong)

(Now use the Multiplication Rule for Independent Events.)

$$= P(\#1 \text{ is correct}) \cdot P(\#2 \text{ is correct}) \cdot P(\#3 \text{ is wrong}) \cdot P(\#4 \text{ is wrong}) \cdot P(\#5 \text{ is wrong})$$

 $= 0.2 \cdot 0.2 \cdot 0.8 \cdot 0.8 \cdot 0.8$

 $= (0.2)^2 \cdot (0.8)^3 = 0.02048$

Then P(exactly 2 successes) =

$$= P\left(\begin{array}{c} \left(\#1 \text{ AND } \#2 \text{ is correct}\right) \text{ OR } \left(\#1 \text{ AND } \#3 \text{ is correct}\right) \text{ OR } \dots \right.$$
$$\left(\#1 \text{ AND } \#4 \text{ is correct}\right) \text{ OR } \left(\#1 \text{ AND } \#5 \text{ is correct}\right) \text{ OR } \dots \right.$$
$$\left(\#2 \text{ AND } \#3 \text{ is correct}\right) \text{ OR } \left(\#2 \text{ AND } \#4 \text{ is correct}\right) \text{ OR } \dots \right.$$
$$\left(\#2 \text{ AND } \#5 \text{ is correct}\right) \text{ OR } \left(\#3 \text{ AND } \#4 \text{ is correct}\right) \text{ OR } \dots \right.$$
$$\left(\#3 \text{ AND } \#5 \text{ is correct}\right) \text{ OR } \left(\#4 \text{ AND } \#5 \text{ is correct}\right) \right)$$

Now use the Addition Rule. Since all ten events in the sample space are disjoint, this last probability can be written as this sum:

$$= P(\#1 \text{ AND } \#2 \text{ is correct}) + P(\#1 \text{ AND } \#3 \text{ is correct}) + \dots$$

$$P(\#1 \text{ AND } \#4 \text{ is correct}) + P(\#1 \text{ AND } \#5 \text{ is correct}) + \dots$$

$$P(\#2 \text{ AND } \#3 \text{ is correct}) + P(\#2 \text{ AND } \#4 \text{ is correct}) + \dots$$

$$P(\#2 \text{ AND } \#5 \text{ is correct}) + P(\#3 \text{ AND } \#4 \text{ is correct}) + \dots$$

$$P(\#3 \text{ AND } \#5 \text{ is correct}) + P(\#4 \text{ AND } \#5 \text{ is correct}) + \dots$$

$$P(\#3 \text{ AND } \#5 \text{ is correct}) + P(\#4 \text{ AND } \#5 \text{ is correct})$$

$$= (0.2)^2 \cdot (0.8)^3 + (0.2)^2 \cdot (0.8)^3 + \dots$$

$$(0.2)^2 \cdot (0.8)^3 + (0.2)^2 \cdot (0.8)^3 + \dots$$

$$(0.2)^2 \cdot (0.8)^3 + (0.2)^2 \cdot (0.8)^3 + \dots (0.2)^2 \cdot (0.8)^3 + (0.2)^2 \cdot (0.8)^3$$

$$= 10 \cdot (0.2)^2 \cdot (0.8)^3$$
$$= ({}_5C_2) \cdot (0.2)^2 \cdot (0.8)^3$$

$$= \left({}_{n}C_{x} \right) \cdot p^{x} \cdot q^{n-x}$$

Example: Assume that a procedure yields a binomial probability model with a trial repeated n = 6 times. Suppose the probability of success on a single trial is p = 0.40. Then, the probability model can be described with either the Binomial Formula, a table or a probability histogram.

- 2. Use the model to find the probability of exactly x = 3 successes in n = 6 trials.
- 3. Find the probability of <u>at least</u> x = 3 successes in n = 6 trials.
- 4. Find the probability of <u>at most</u> x = 3 successes in n = 6 trials.
- 5. <u>Calculator</u>: Place the model in your calculator's list 1 (L1) and list 2 (L2).

Step 1: Put the numbers 0 through 6 in L1. Use $seq(X, X, 0, 6) \rightarrow L1$

Step 2: Use binomPdf $(n, p) \rightarrow L2$ to put the associated probabilities in L2.

Step 3: Open your list environment (stat \rightarrow enter) and notice the distribution table is in L1 and L2.

6. Assume that a procedure yields a binomial probability distribution with a trial repeated n = 5 times. Suppose the probability of success on a single trial is p = 0.47. Then X counts the number of successes among 5 trials. Describe the probability distribution by filling out the table below. Round calculations to five decimal places. In addition, graph the distribution.

x	P(X=x)
0	
1	
2	
3	
4	
5	

$More\ Calculator\ Facts\ --\ Binomial\ Model$

Your calculator has two binomial functions in its list of distributions (probability models). These are the binomPdf and binomCdf functions.

- pdf stands for probability distribution function and gives the probability P(X = x)
- cdf stands for <u>cumulative distribution function</u> and gives the probability $P(X \le x)$

Both functions take can take 3 input arguments: n, p, and x, each separated by a comma.

	TI-83/84	Let $x = 3$	TI-83/84	
P(X=x)	$\operatorname{binomPdf}(n, p, x)$	P(X=3)	$\operatorname{binomPdf}(6, .4, 3)$	0.27648
$P(X \le x)$	$\operatorname{binomCdf}(n, p, x)$	$P(X \le 3)$	binomCdf(6, .4, 3)	0.8208
P(X < x)	$\operatorname{binomCdf}(n, p, x - 1)$	P(X < 3)	$\operatorname{binomCdf}(6, .4, 2)$	0.54432
P(X > x)	$1 - \mathrm{binomCdf}(n, p, x)$	P(X > 3)	$1 - \mathrm{binomCdf}(6, .4, 3)$	0.1792
$P(X \ge x)$	$1 - ext{binomCdf}(n, p, x - 1)$	$P(X \ge 3)$	$1-\mathrm{binomCdf}(6,.4,2)$	0.45568

7. Let X be a binomial random variable with n = 12 and p = 0.3. Find the following:

(a)	P(X=5)	(a)	
-----	--------	-----	--

(b) P(X=8) (b) _____

8. Assume that 13% of people are left-handed. If we select 42 students at random, find the probability of each outcome described below. Use a binomial probability distribution.

(a)	There is at least one lefty in the group	(a)
(b)	There are exactly 3 lefties in the group	(b)
(c)	There are not more than 3 lefties in the group	(c)

- 9. People with type O-negative blood are said to be "universal donors." About 7% of the U.S. population has this blood type. Suppose that 335 people show up at a blood drive. Use a binomial probability distribution.
 - (a) What is the expected number universal donors in the group?

(b) _____

(a) _____

(c) What is the probability that more than 30 universal donors are in the group?

(c) _____

(d) Using the range rule of thumb, would it be considered unusual to have that more than 50 universal donors are in the group?

(d) _____

Recall Question 6: Assume that a procedure yields a binomial probability distribution with a trial repeated n = 5 times. Suppose the probability of success on a single trial is p = 0.47. Then X counts the number of successes among 5 trials. Describe the probability distribution by filling out the table below. Round calculations to five decimal places.

x	P(X=x)
0	0.04182
1	0.18543
2	0.32887
3	0.29164
4	0.12931
5	0.02293

10. Find the expected value, $\mu = E(X)$, of the above binomial distribution using the formula

$$E(X) = \sum x \cdot P(x)$$

Remember, this means multiplying the entries in L1 by the entries in L2, then summing the products.

L1	L2	163 3
042356	.04666 .18662 .31104 .27648 .13824 .03686 .0041	
L3 =L	_1*L2	-

- 11. Find the expected value of the distribution, $\mu = E(X)$, using the formula $E(X) = n \cdot p$. What do you notice?
- 12. Find the standard deviation of the binomial distribution, σ , using the formula $\sigma = \sqrt{n \cdot p \cdot q}$