Table of Contents

Attachments and

 Links5.2 Random Variables
Random Experiments
Probability
Distributions
Random Variables
Discrete Probability Distributions
Probability Histogram
Mean, Variance and Standard Deviation

Chapter 5

Professor Tim Busken

Grossmont College
Mathematics Department

June 8, 2013

Table of Contents

(1) Table of Contents

Attachments and Links
(2) 5.2 Random Variables

Random Experiments
Probability Distributions
Random Variables
Discrete Probability Distributions
Probability Histogram
Mean, Variance and Standard Deviation
Identifying Unusual Results
Expected Value
(3) 5.3 The Binomial Distribution

4 5.4 Mean, Variance, and Standard Deviation for the Binomial Distribution
(5) Works Cited

Attachments and Links

worksheet attachment

Binomial Example 1
(1)
worksheet key

Binomial Example 2 (6)

How to Graph the Probability Histogram on the TI calculators. [1]
5.4 Mendel's Binomial Experiment [2]

A Random Experiment is an experiment, trial, procedure or observation that can be repeated numerous times under the same conditions. The outcome of an individual random experiment must in no way be affected by any previous outcome and cannot be predicted with certainty.

Definition

A Random Experiment is an experiment, trial, procedure or observation that can be repeated numerous times under the same conditions. The outcome of an individual random experiment must in no way be affected by any previous outcome and cannot be predicted with certainty.

Accompanying this experiment is
(1) a sample space (all possible outcomes of the experiment),
(2) a probability (assigned to each outcome in the experiment)
(3) a random variable, and
(4) a probability distribution.

Definition

A Random Experiment is an experiment, trial, procedure or observation that can be repeated numerous times under the same conditions. The outcome of an individual random experiment must in no way be affected by any previous outcome and cannot be predicted with certainty.

Accompanying this experiment is
(1) a sample space (all possible outcomes of the experiment),
(2) a probability (assigned to each outcome in the experiment)
(3) a random variable, and
(4) a probability distribution.

Definition

A Random Experiment is an experiment, trial, procedure or observation that can be repeated numerous times under the same conditions. The outcome of an individual random experiment must in no way be affected by any previous outcome and cannot be predicted with certainty.

Accompanying this experiment is
(1) a sample space (all possible outcomes of the experiment),
(2) a probability (assigned to each outcome in the experiment)
(3) a random variable, and
(4) a probability distribution.

Definition

A Random Experiment is an experiment, trial, procedure or observation that can be repeated numerous times under the same conditions. The outcome of an individual random experiment must in no way be affected by any previous outcome and cannot be predicted with certainty.

Accompanying this experiment is
(1) a sample space (all possible outcomes of the experiment),
(2) a probability (assigned to each outcome in the experiment)
(3) a random variable, and
(4) a probability distribution.

Definition

A Random Experiment is an experiment, trial, procedure or observation that can be repeated numerous times under the same conditions. The outcome of an individual random experiment must in no way be affected by any previous outcome and cannot be predicted with certainty.

Accompanying this experiment is
(1) a sample space (all possible outcomes of the experiment),
(2) a probability (assigned to each outcome in the experiment)
(3) a random variable, and
(4) a probability distribution.

Table of Contents

Attachments and Links
5.2 Random Variables
Random Experiments
Probability
Distributions
Random Variables
Discrete Probability Distributions
Probability Histogram
Mean, Variance and Standard Deviation

Expected Value
5.3 The

Binomial
Distribution
5.4 Mean,

Variance, and
Standard
Deviation for the Binomial Distribution

Definition

A variable x is a Random Variable if the numerical value that it assumes, corresponding to an outcome of an experiment, is a chance or random event.

Experiment: Toss a single die

x	Probability, $P(x)$
1	0.1667
2	0.1667
3	0.1667
4	0.1667
5	0.1667
6	0.1667

Definition

A variable x is a Random Variable if the numerical value that it assumes, corresponding to an outcome of an experiment, is a chance or random event.

A Probability Distribution lists the probabilities associated with each possible outcome in the sample space for a procedure, trial or random experiment. A probability distribution can be written as a table, formula, or graph (called a probability histogram).

Experiment: Toss a single die

x	Probability, $P(x)$
1	0.1667
2	0.1667
3	0.1667
4	0.1667
5	0.1667
6	0.1667

Chapter 5
Tim Busken

Table of Contents

Attachments and Links
5.2 Random Variables

Random Experiments Probability Distributions Random Variables Discrete Probability Distributions

Chapter 5

Tim Busken

Table of

 ContentsAttachments and Links
5.2 Random Variables

Random Experiments
Probability
Distributions
Random Variables
Discrete Probability Distributions

Probability Histogram
Mean, Variance and Standard Deviation Identifying Unusual Results

Expected Value
5.3 The

Binomial

Distribution
5.4 Mean,

Variance, and
Standard
Deviation for the Binomial Distribution

Chapter 5
Tim Busken
Table of Contents

Random Variables can be

Attachments and Links
5.2 Random Variables

Random Experiments Probability Distributions Random Variables Discrete Probability Distributions Probability Histogram Mean, Variance and Standard Deviation Identifying Unusual Results

Expected Value
5.3 The

Binomial Distribution
5.4 Mean,

Discrete
Chapter 5

Continuous
Chapter 6

Random Variables

Random Variables can be discre

Attachments and Links

5.2 Random Variables
Random Experiments Probability Distributions Random Variables Distributions

Discrete

Chapter 5

Continuous

Chapter 6

Random Variables can be discrete

5.2 Random Variables

Random Experiments Probability Distributions Random Variables

Table of Contents

Attachments and Links
5.2 Random Variables
Random Experiments Probability Distributions Random Variables Discrete Probability Distributions
Probability Histogram
Mean, Variance and Standard Deviation Identifying Unusual Results

Expected Value
5.3 The

Binomial Distribution
5.4 Mean,

Random Variables can be discrete!

Table of Contents

Attachments and Links
5.2 Random Variables

Random Experiments Probability Distributions Random Variables Discrete Probability Distributions
Probability Histogram
Mean, Variance and Standard Deviation Identifying Unusual Results

Expected Value
5.3 The

Binomial

 Distribution5.4 Mean,

Random Variables can be discrete!

Table of Contents

Attachments and _inks
5.2 Random Variables
Random Experiments
Probability Distributions Random Variables Discrete Probability Distributions
Probability Histogram
Mean, Variance and Standard Deviation Identifying Unusual Results

Expected Value
5.3 The

Binomial Distribution
5.4 Mean,

Random Variables can be discrete!

Table of Contents

Attachments and Links
5.2 Random Variables
Random Experiments
Probability Distributions Random Variables Discrete Probability Distributions
Probability Histogram
Mean, Variance and Standard Deviation Identifying Unusual Results

Expected Value
5.3 The

Binomial Distribution
5.4 Mean,

Random Variables can be discrete!

Table of Contents

Attachments and _inks
5.2 Random Variables

Random Experiments
Probability Distributions Random Variables Discrete Probability Distributions
Probability Histogram
Mean, Variance and Standard Deviation Identifying Unusual Results

Expected Value
5.3 The

Binomial Distribution
5.4 Mean,

Random Variables can be discrete!

Table of Contents

Random Variables can be discrete!

Table of Contents

Attachments and Links
5.2 Random Variables

Random Experiments
Probability Distributions Random Variables Discrete Probability Distributions
Probability Histogram
Mean, Variance and Standard Deviation Identifying Unusual Results

Expected Value
5.3 The

Binomial Distribution
5.4 Mean,

Random Variables can be discrete!

Table of Contents

Attachments and _inks
5.2 Random Variables

Random Experiments Probability Distributions Random Variables Discrete Probability Distributions Probability Histogram Mean, Variance and Standard Deviation

Random Variables can be discrete!

Table of Contents

Attachments and Links
5.2 Random Variables

Random Experiments
Probability Distributions Random Variables Discrete Probability Distributions Probability Histogram Mean, Variance and Standard Deviation Results

Expected Value
5.3 The

Binomial Distribution
5.4 Mean,

Random Variables can be discrete!

Table of Contents

Attachments and Links
5.2 Random Variables

Random Experiments
Probability
Distributions
Random Variables
Discrete Probability Distributions
Probability Histogram
Mean, Variance and Standard Deviation Results

Expected Value

Random Variables can be discrete!

Table of Contents

Attachments and Links
5.2 Random Variables

Random Experiments
Probability
Distributions
Random Variables
Discrete Probability Distributions
Probability Histogram
Mean, Variance and Standard Deviation Results

Expected Value

Random Variables can be discrete!

Table of Contents

Attachments and Links
5.2 Random Variables

Random Experiments
Probability
Distributions
Random Variables
Discrete Probability Distributions
Probability Histogram
Mean, Variance and Standard Deviation Results

Expected Value

Random Variables can be discrete!

Table of Contents

Attachments and Ln 8
5.2 Random Variables
Random Experiments Probability Distributions Random Variables Discrete Probability Distributions Probability Histogram Mean, Variance and Standard Deviation Results

Expected Value

Random Variables can be discrete!

Table of Contents

Attachments and lik; S
5.2 Random Variables
Random Experiments Probability Distributions Random Variables Discrete Probability Distributions Probability Histogram Mean, Variance and Standard Deviation Results

Expected Value

Random Variables can be discrete!

Table of Contents

Attachments and Lnis:
5.2 Random Variables
Random Experiments Probability Distributions Random Variables Discrete Probability Distributions Probability Histogram Mean, Variance and Standard Deviation Results
Expected Value

Random Variables can be discrete!

Table of Contents

Attachments and Link;
5.2 Random Variables
Random Experiments Probability Distributions Random Variables Discrete Probability Distributions Probability Histogram Mean, Variance and Standard Deviation Results
Expected Value

Random Variables can be discrete!

Table of Contents

Attachments and Altis Inlis
5.2 Random Variables

Random Experiments Probability Distributions Random Variables Discrete Probability Distributions
Probability Histogram
Mean, Variance and Standard Deviation

Random Variables can be discrete!

Table of Contents

Attachments and Altactments and CO Iinuous!
5.2 Random Variables
Random Experiments
Probability
Distributions
Random Variables
Discrete Probability Distributions
Probability Histogram
Mean, Variance and Standard Deviation

Random Variables can be discrete!

Random Variables can be discrete!

5.2 Random Variables

Random Experiments
Probability
Distributions
Random Variables
Discrete Probability Distributions
Probability Histogram
Mean, Variance and Standard Deviation

Random Variables can be discrete!

5.2 Random

 VariablesRandom Experiments
Probability
Distributions
Random Variables
Discrete Probability Distributions
Probability Histogram
Mean, Variance and Standard Deviation

Identifying Unusual

Results
Expected Value
5.3 The

Binomial
Distribution
5.4 Mean,

Random Variables can be discrete!

Ant or continuous!

5.2 Random

 VariablesRandom Experiments
Probability
Distributions
Random Variables
Discrete Probability Distributions
Probability Histogram
Mean, Variance and Standard Deviation

Identifying Unusual

Results
Expected Value
5.3 The

Binomial

Random Variables can be discrete!

or continuous!

5.2 Random

 VariablesRandom Experiments
Probability
Distributions
Random Variables
Discrete Probability Distributions
Probability Histogram
Mean, Variance and Standard Deviation

Chapter 5
Tim Busken

Table of

 ContentsAttachments and Links

5.2 Random

 VariablesRandom Experiments Probability Distributions Random Variables Discrete Probability Distributions Probability Histogram Mean, Variance and Standard Deviation Results

Expected Value

Random Variables can be discrete!

or continuous!

Table of Contents

Attachments and Links
5.2 Random Variables
Random Experiments
Probability
Distributions
Random Variables
Discrete Probability Distributions
Probability Histogram
Mean, Variance and Standard Deviation

Identifying Unusual

 ResultsExpected Value
5.3 The

Binomial Distribution

Random Variables can be discrete!

or continuous!

Table of Contents

Attachments and Links
5.2 Random Variables
Random Experiments
Probability
Distributions
Random Variables
Discrete Probability Distributions
Probability Histogram
Mean, Variance and Standard Deviation
Results

Expected Value
5.3 The

Binomial Distribution

Random Variables can be discrete! or continuous!

Table of Contents

Attachments and Links

5.2 Random Variables
Random Experiments
Probability
Distributions
Random Variables
Discrete Probability Distributions
Probability Histogram
Mean, Variance and Standard Deviation

Identifying Unusual

 ResultsExpected Value
5.3 The

Binomial Distribution

Random Variables can be discrete! or continuous!

Chapter 5

2013-06-08

5.2 Random Variables Random Variables

Know the difference between discrete and continuous RVs.

Table of

 ContentsAttachments and Links
5.2 Random Variables
Random Experiments

Probability

Distributions
Random Variables
Discrete Probability Distributions
Probability Histogram
Mean, Variance and Standard Deviation Identifying Unusual Results
Expected Value
5.3 The

Binomial
Distribution
5.4 Mean,

Definition (Discrete random variable)

either a finite number of values or countable number of values, where countable refers to the fact that there might be infinitely many values, but they result from a counting process

Definition (Continuous random variable)

infinitely many values, and those values can be associated with measurements on a continuous scale without gaps or interruptions
\qquad

Random Variables

Begin Quiz Identify the given random variable as being discrete or continuous.

1. The number of snow storms occurring off the eastern coast of the U.S.
(a) Discrete
(b) Continuous
2. The height of an ocean's tide at your favorite beach.
(a) Discrete
(b) Continuous
3. The length of a king salmon
(a) Discrete
(b) Continuous
4. The braking time of a car
(a) Discrete
(b) Continuous

End Quiz Score: Correct

Random Variables

Begin Quiz Identify the given random variable as being discrete or continuous.

1. The number of phone calls made during the election on behalf of special interests.
(a) Discrete
(b) Continuous
2. The number of gallons of milk produced by a single cow.
(a) Discrete
(b) Continuous
3. The number of students present at graduation.
(a) Discrete
(b) Continuous
4. The number of aircraft near-collisions in a year
(a) Discrete
(b) Continuous

End Quiz Score: Correct

Chapter 5
Tim Busken
Table of Contents

Attachments and Links
5.2 Random Variables
Random Experiments
Probability
Distributions
Random Variables
Discrete Probability Distributions
Probability Histogram
Mean, Variance and Standard Deviation
Identifying Unusual Results
Expected Value
5.3 The

Binomial Distribution

Discrete Probability Distributions

Example: As the owner of successful small business, you cannot afford to take a sick day. Suppose the random variable x represents the number of $\$ 1000$ units you sell in a day. Additionally, suppose that based on years of company records, the probability distribution is summarized in the table (right).

x	$P(x)$
0	0.191
1	0.314
2	0.363
3	0.123
4	0.009

Chapter 5

Tim Busken

Discrete Probability Distributions

Table of

Contents

Attachments and Links
5.2 Random Variables
Random Experiments
Probability
Distributions
Random Variables
Discrete Probability Distributions
Probability Histogram
Mean, Variance and Standard Deviation

Identifying Unusual Results
Expected Value
5.3 The

Binomial
Distribution
5.4 Mean,

Variance, and
Standard
Deviation for
Example: As the owner of successful small business, you cannot afford to take a sick day. Suppose the random variable x represents the number of $\$ 1000$ units you sell in a day. Additionally, suppose that based on years of company records, the probability distribution is summarized in the table (right).

Does this fit the requirements for a probability distribution?

Chapter 5
Tim Busken
Table of Contents

Attachments and Links

5.2 Random Variables
Random Experiments
Probability
Distributions
Random Variables
Discrete Probability Distributions
Probability Histogram
Mean, Variance and Standard Deviation
Identifying Unusual

Results

Expected Value
5.3 The

Binomial
Distribution
5.4 Mean,

Variance, and
Standard
Deviation for the Binomial Distribution

Discrete Probability Distributions

Example: As the owner of successful small business, you cannot afford to take a sick day. Suppose the random variable x represents the number of $\$ 1000$ units you sell in a day. Additionally, suppose that based on years of company records, the probability distribution is summarized in the table (right).

x	$P(x)$
0	0.191
1	0.314
2	0.363
3	0.123
4	0.009

Does this fit the requirements for a probability distribution?

Requirements for Probability Distribution
1.) $\sum P(x)=1$

The sum of all the probabilities must be 1, but values such as 0.999 or 1.001 are acceptable because they result from rounding errors.
2.) $\quad 0 \leq P(x) \leq 1 \quad$ for every each value of x. (i.e., each probability value must be between 0 and 1 inclusive.)

Chapter 5
Tim Busken
Table of Contents

Attachments and Links

5.2 Random Variables
Random Experiments
Probability
Distributions
Random Variables
Discrete Probability Distributions
Probability Histogram
Mean, Variance and Standard Deviation

Identifying Unusual

Results

Expected Value
5.3 The

Binomial
Distribution
5.4 Mean,

Variance, and
Standard

Discrete Probability Distributions

Example: As the owner of successful small business, you cannot afford to take a sick day. Suppose the random variable x represents the number of $\$ 1000$ units you sell in a day. Additionally, suppose that based on years of company records, the probability distribution is summarized in the table (right).

x	$P(x)$
0	0.191
1	0.314
2	0.363
3	0.123
4	0.009

Begin Quiz Identify the correct probability.

1. $P(3)$
(a) 0.991
(b) 0.363
(c) 0.123
(d) 0.515
2. The probability you sell at least $2 \$ 1000$ units.
(a) 0.363
(b) 0.132
(c) 0.495
(d) 0.505
3. The probability you sell less than $3 \$ 1000$ units.
(a) 0.868
(b) 0.991
(c) 0.123
(d) 0.515
4. $P(x<2)$
(a) 0.314
(b) 0.505
(c) 0.363
(d) 0.515
5. The probability you sell at least 1 unit.
(a) 0.314
(b) 0.727
(c) 0.948
(d) 0.809

End Quiz
Score:
Correct

Chapter 5
Tim Busken
Table of Contents

Discrete Probability Distributions

Discrete Probability

 DistributionsProbability Histogram
Mean, Variance and Standard Deviation Identifying Unusual Results
Expected Value
5.3 The

Binomial
Distribution
Example: Air America has a policy of routinely overbooking flights. The random variable x represents the number of passengers who cannot be boarded because there are more passengers than seats.

x	$P(x)$
0	0.051
1	0.141
2	0.274
3	0.331
4	0.187

Discrete Probability Distributions

Table of

Contents
Attachments and Links
5.2 Random Variables
Random Experiments
Probability
Distributions
Random Variables

Discrete Probability

 DistributionsProbability Histogram
Mean, Variance and Standard Deviation

Identifying Unusual

Results
Expected Value
5.3 The

Binomial
Distribution

Example: Air America has a policy of routinely overbooking flights. The random variable x represents the number of passengers who cannot be boarded because there are more passengers than seats.

x	$P(x)$
0	0.051
1	0.141
2	0.274
3	0.331
4	0.187

Quiz Does the given table fit the requirements for a probability distribution? \square yes

Discrete Probability Distributions

Table of

Contents
Attachments and Links
5.2 Random Variables
Random Experiments
Probability
Distributions
Random Variables

Discrete Probability

 DistributionsProbability Histogram
Mean, Variance and Standard Deviation

Identifying Unusual

Results
Expected Value
5.3 The

Binomial
Distribution

Example: Air America has a policy of routinely overbooking flights. The random variable x represents the number of passengers who cannot be boarded because there are more passengers than seats.

x	$P(x)$
0	0.051
1	0.141
2	0.274
3	0.331
4	0.187

Quiz Does the given table fit the requirements for a probability distribution? \square yes

Discrete Probability Distributions

Table of

Example: Air America has a policy of routinely overbooking flights. The random variable x represents the number of passengers who cannot be boarded because there are more passengers than seats.

x	$P(x)$
0	0.051
1	0.141
2	0.274
3	0.331
4	0.187

Quiz Does the given table fit the requirements for a probability distribution?
\square
\square

The given table does not fit the requirements for a probability distribution because the sum of the probabilities in the table is not equal to 1 .

Chapter 5
Tim Busken
Table of Contents Attachments and Links
5.2 Random Variables
Random Experiments
Probability
Distributions
Random Variables
Discrete Probability Distributions
Probability Histogram
Mean, Variance and Standard Deviation Identifying Unusual Results
Expected Value

Discrete Probability Distributions

Example: Sam's Used Carpet. The random variable x represents the number of used carpets sold in a day at Sam's store

x	$P(x)$
0	0.258
1	0.143
2	0.774
3	-0.231
4	0.137

Chapter 5

Tim Busken

Discrete Probability Distributions

Table of

Example: Sam's Used Carpet. The random variable x represents the number of used carpets sold in a day at Sam's store

x	$P(x)$
0	0.258
1	0.143
2	0.774
3	-0.231
4	0.137

Quiz Does the given table fit the requirements for a probability distribution?
\square
\square

Chapter 5

Tim Busken

Discrete Probability Distributions

Table of

Example: Sam's Used Carpet. The random variable x represents the number of used carpets sold in a day at Sam's store

x	$P(x)$
0	0.258
1	0.143
2	0.774
3	-0.231
4	0.137

Quiz Does the given table fit the requirements for a probability distribution?
\square
\square

Example: Sam's Used Carpet. The random variable x represents the number of used carpets sold in a day at Sam's store

Discrete Probability Distributions

	x	$P(x)$
	0	0.258
	1	0.143
	2	0.774
\rightarrow	3	-0.231
	4	0.137

Quiz Does the given table fit the requirements for a probability distribution? \square yes \square

The given table does not fit the requirements for a probability distribution because there is a probability (namely -0.231) that is not a value between 0 and 1 inclusive.

Chapter 5

Tim Busken

Probability Histogram

Table of

 ContentsAttachments and Links
5.2 Random Variables

Random Experiments
Probability
Distributions
Random Variables
Discrete Probability Distributions
Probability Histogram
Mean, Variance and Standard Deviation

Identifying Unusual Results

Expected Value
5.3 The

Binomial
Distribution
5.4 Mean,

Variance, and
Standard
Deviation for
Example: As the owner of successful small business, you cannot afford to take a sick day. Suppose the random variable x represents the number of $\$ 1000$ units you sell in a day. Additionally, suppose that based on years of company records, the probability distribution is summarized in the table (right).

x	$P(x)$
0	0.191
1	0.314
2	0.363
3	0.123
4	0.009

Tim Busken

Probability Histogram

Table of

 ContentsAttachments and Links

5.2 Random Variables
Random Experiments
Probability
Distributions
Random Variables
Discrete Probability Distributions
Probability Histogram
Mean, Variance and Standard Deviation

Identifying Unusual

 ResultsExpected Value
5.3 The

Binomial
Distribution
5.4 Mean,

Variance, and
Standard
Deviation for the Binomial Distribution

Example: As the owner of successful small business, you cannot afford to take a sick day. Suppose the random variable x represents the number of $\$ 1000$ units you sell in a day. Additionally, suppose that based on years of company records, the probability distribution is summarized in the table (right).

We can graph the probability distribution using a probability histogram.

Probability Histogram

Table of

Contents

Attachments and Links
5.2 Random Variables

Example: As the owner of successful small business, you cannot afford to take a sick day. Suppose the random variable x represents the number of $\$ 1000$ units you sell in a day. Additionally, suppose that based on years of company records, the probability distribution is summarized in the table (right).

We can graph the probability distribution using a probability histogram.

Probability Histogram

Table of

Contents

Attachments and Links
5.2 Random Variables
Random Experiments
Probability
Distributions
Random Variables
Discrete Probability Distributions
Probability Histogram
Mean, Variance and Standard Deviation

Identifying Unusual

Results
Expected Value
5.3 The

Binomial
Distribution
5.4 Mean,

Variance, and
Standard Deviation for the Binomial Distribution

Example: As the owner of successful small business, you cannot afford to take a sick day. Suppose the random variable x represents the number of $\$ 1000$ units you sell in a day. Additionally, suppose that based on years of company records, the probability distribution is summarized in the table (right).

We can graph the probability distribution using a probability histogram.

Notice that it is similar to a relative frequency histogram, but the vertical scale shows probabilities instead of relative frequencies based on actual sample results.

Probability Histogram

Table of

Contents

Attachments and Links
5.2 Random Variables
Random Experiments
Probability
Distributions
Random Variables
Discrete Probability Distributions
Probability Histogram
Mean, Variance and
Standard Deviation
Identifying Unusual

Results

Expected Value
5.3 The

Binomial
Distribution
5.4 Mean,

Variance, and
Standard Deviation for the Binomial Distribution

Example: As the owner of successful small business, you cannot afford to take a sick day. Suppose the random variable x represents the number of $\$ 1000$ units you sell in a day. Additionally, suppose that based on years of company records, the probability distribution is summarized in the table (right).

x	$P(x)$
0	0.191
1	0.314
2	0.363
3	0.123
4	0.009

We can graph the probability distribution using a probability histogram.

Notice that it is similar to a relative frequency histogram, but the vertical scale shows probabilities instead of relative frequencies based on actual sample results.

We see the values of $0,1,2,3,4$ along the horizontal axis are located at the center of the rectangle. This implies that the rectangles are each 1 unit wide, so the areas of the rectangles are $0.191,0.314,0.363$, $0.123,0.009$. The areas of these rectangles are the same as the probabilities in the table (above).

In later chapters, we will see that the correspondence between probabilities and area is hugely useful in statistics.

Chapter 5

Tim Busken

Table of Contents

Attachments and Links
5.2 Random Variables

Random Experiments
Probability
Distributions
Random Variables
Discrete Probability Distributions
Probability Histogram
Mean, Variance and Standard Deviation Identifying Unusual Results

Expected Value
5.3 The

Binomial
Distribution
5.4 Mean,

Variance, and
Standard
Deviation for
the Binomial
Distribution

Table of

 ContentsAttachments and Links

5.2 Random Variables
Random Experiments
Probability
Distributions
Random Variables
Discrete Probability Distributions
Probability Histogram
Mean, Variance and Standard Deviation Identifying Unusual Results
Expected Value

The five characteristics of data from Chapter 2 can be used to describe probability distributions. A Probability histogram or table can provide insight into the distribution of random variables.

Characteristics of Data

Table of

 ContentsAttachments and Links

5.2 Random Variables
Random Experiments
Probability
Distributions
Random Variables

The five characteristics of data from Chapter 2 can be used to describe probability distributions. A Probability histogram or table can provide insight into the distribution of random variables.

The mean is the central value of the random variable for a procedure repeated an infinite number of times. The

Center variance and standard deviation measure the variation of the random variable.

The five characteristics of data from Chapter 2 can be used to describe probability distributions. A Probability histogram or table can provide insight into the distribution of random variables.

The mean is the central value of the random variable for a procedure repeated an infinite number of times. The

Center variance and standard deviation measure the variation of the random variable.

$$
\begin{array}{ll}
\hline \text { Measures of Center and Variation for probability distributions } \\
\begin{array}{ll}
\mu=\sum[x \cdot P(x)] & \text { Mean } \\
\sigma^{2}=\sum\left[(x-\mu)^{2} \cdot P(x)\right] & \text { Variance } \\
\sigma^{2}=\sum\left[x^{2} \cdot P(x)\right]-\mu^{2} & \text { Variance (computational shortcut formula) } \\
\sigma=\sqrt{\sigma^{2}}=\sqrt{\sum\left[x^{2} \cdot P(x)\right]-\mu^{2}} & \text { Standard Deviation } \\
\hline
\end{array}
\end{array}
$$

Distribution

Time
Outliers

$$
\text { Mean } \quad \mu=\sum[x \cdot P(x)]
$$

Table of

Example: As the owner of successful small business, you cannot afford to take a sick day. Suppose the random variable x represents the number of $\$ 1000$ units you sell in a day. Additionally, suppose that based on years of company records, the probability distribution is summarized in the table (below).

Determine the mean value for the distribution.

x	$P(x)$
0	0.191
1	0.314
2	0.363
3	0.123
4	0.009

Mean $\mu=\sum[x \cdot P(x)]$

Example: As the owner of successful small business, you cannot afford to take a sick day. Suppose the random variable x represents the number of $\$ 1000$ units you sell in a day. Additionally, suppose that based on years of company records, the probability distribution is summarized in the table (below).

Determine the mean value for the distribution.

x	$P(x)$	$x \cdot P(x)$
0	0.191	$0 \cdot 0.191=0$
1	0.314	$1 \cdot 0.314=0.314$
2	0.363	$2 \cdot 0.363=0.726$
3	0.123	$3 \cdot 0.123=0.369$
4	0.009	$4 \cdot 0.009=0.036$

$$
\begin{aligned}
& \text { Multiply straight across. This is called } \\
& \text { multiplying the two columns elementwise. }
\end{aligned}
$$

Mean $\mu=\sum[x \cdot P(x)]$

Example: As the owner of successful small business, you cannot afford to take a sick day. Suppose the random variable x represents the number of $\$ 1000$ units you sell in a day. Additionally, suppose that based on years of company records, the probability distribution is summarized in the table (below).

Determine the mean value for the distribution.

Chapter 5
Tim Busken
Table of Contents

Attachments and Links
5.2 Random Variables
Random Experiments
Probability
Distributions
Random Variables
Discrete Probability Distributions
Probability Histogram
Mean, Variance and Standard Deviation

Identitying Unusual

Results
Expected Value
5.3 The

Binomial
Distribution
5.4 Mean,

Variance, and

How can we do this with the calculator?

Chapter 5
Tim Busken

Table of

 Contents Attachments and Links5.2 Random Variables

x	$P(x)$	$x \cdot P(x)$
0	0.191	$0 \cdot 0.191=0$
1	0.314	$1 \cdot 0.314=0.314$
2	0.363	$2 \cdot 0.363=0.726$
3	0.123	$3 \cdot 0.123=0.369$
4	0.009	$4 \cdot 0.009=0.036$
		$\mu=\sum[x \cdot P(x)]=1.445$

L1	Lこ	4	3
0	.191	------	
1	. 14		
$\frac{3}{3}$. 12		
4	. 0		
$\bar{L}=\square$			

(1) Enter the data into L1 and L2. Scroll up and over with your arrow keys until your cursor is highlighting L3 (bottom right figure).

Mean $\mu=\sum[x \cdot P(x)]$

Table of Contents

x	$P(x)$	$x \cdot P(x)$
0	0.191	$0 \cdot 0.191=0$
1	0.314	$1 \cdot 0.314=0.314$
2	0.363	$2 \cdot 0.363=0.726$
3	0.123	$3 \cdot 0.123=0.369$
4	0.009	$4 \cdot 0.009=0.036$
		$\mu=\sum[x \cdot P(x)]=1.445$

L1	Lz	18	3
\%	. 191	------	
1	. 31		
$\frac{1}{3}$. 12		
4	. 6		

Mean $\mu=\sum[x \cdot P(x)]$

(1) Enter the data into L1 and L2. Scroll up and over with your arrow keys until your cursor is highlighting L3 (bottom right figure).
(2) Press 2nd 1 2nd x enter
(3) The calculator fills L3 with the elementwise products.

x	$P(x)$	$x \cdot P(x)$
0	0.191	$0 \cdot 0.191=0$
1	0.314	$1 \cdot 0.314=0.314$
2	0.363	$2 \cdot 0.363=0.726$
3	0.123	$3 \cdot 0.123=0.369$
4	0.009	$4 \cdot 0.009=0.036$
		$\mu=\sum[x \cdot P(x)]=1.445$

L1	LE	120	3
0	.191	0	
1	. 14	. 31	
$\frac{2}{3}$. 12	. 2	
4	. 0	. ${ }^{2}$	

Mean $\mu=\sum[x \cdot P(x)]$

(1) Enter the data into L1 and L2. Scroll up and over with your arrow keys until your cursor is highlighting L3 (bottom right figure).
(2) Press 2nd 1 2nd x enter
(3) The calculator fills L3 with the elementwise products.
(4) The mean is the sum of the L3 entries. Calculate 1 -variable statistics then take $\sum x$ to be μ. Make sure you do 1 -variable statistics on L3.

$$
\begin{array}{l|l|l}
x & P(x) & x \cdot P(x) \\
0 & 0.191 & 0 \cdot 0.191=0 \\
1 & 0.314 & 1 \cdot 0.314=0.314 \\
2 & 0.363 & 2 \cdot 0.363=0.726 \\
3 & 0.123 & 3 \cdot 0.123=0.369 \\
4 & 0.009 & 4 \cdot 0.009=0.036 \\
& & \mu=\sum[x \cdot P(x)]=1.445
\end{array}
$$

1-Wシr St.ヨts Ls

Mean $\mu=\sum[x \cdot P(x)]$

(1) Enter the data into L1 and L2. Scroll up and over with your arrow keys until your cursor is highlighting L3 (bottom right figure).
(2) Press 2nd 1 2nd x enter
(3) The calculator fills L3 with the elementwise products.
(4) The mean is the sum of the L 3 entries. Calculate 1 -variable statistics then take $\sum x$ to be μ. Make sure you do 1 -variable statistics on L3.

x	$P(x)$	$x \cdot P(x)$
0	0.191	$0 \cdot 0.191=0$
1	0.314	$1 \cdot 0.314=0.314$
2	0.363	$2 \cdot 0.363=0.726$
3	0.123	$3 \cdot 0.123=0.369$
4	0.009	$4 \cdot 0.009=0.036$
		$\mu=\sum[x \cdot P(x)]=1.445$

Mean $\mu=\sum[x \cdot P(x)]$

(1) Enter the data into L1 and L2. Scroll up and over with your arrow keys until your cursor is highlighting L3 (bottom right figure).
(2) Press 2nd 1 2nd x enter
(3) The calculator fills L3 with the elementwise products.
(4) The mean is the sum of the L 3 entries. Calculate 1 -variable statistics then take $\sum x$ to be μ. Make sure you do 1 -variable statistics on L3.

Example: As the owner of successful small business, you cannot afford to take a sick day. Suppose the random variable x represents the number of $\$ 1000$ units you sell in a day. Additionally, suppose that based on years of company records, the probability distribution is summarized in the table (below).

Determine the variance for the distribution.

x	$P(x)$
0	0.191
1	0.314
2	0.363
3	0.123
4	0.009

Example: As the owner of successful small business, you cannot afford to take a sick day. Suppose the random variable x represents the number of $\$ 1000$ units you sell in a day. Additionally, suppose that based on years of company records, the probability distribution is summarized in the table (below).

Determine the variance for the distribution.

x	$P(x)$	$x^{2} \cdot P(x)$
0	0.191	$0^{2} \cdot 0.191=0$
1	0.314	$1^{2} \cdot 0.314=0.314$
2	0.363	$2^{2} \cdot 0.363=1.452$
3	0.123	$3^{2} \cdot 0.123=1.107$
4	0.009	$4^{2} \cdot 0.009=0.144$

Square each individual value of x, then multiply it by its associated probability, $P(x)$. List these products in a separate column.

Example: As the owner of successful small business, you cannot afford to take a sick day. Suppose the random variable x represents the number of $\$ 1000$ units you sell in a day. Additionally, suppose that based on years of company records, the probability distribution is summarized in the table (below).

Determine the variance for the distribution.

x	$P(x)$	$x^{2} \cdot P(x)$	
0	0.191	$0^{2} \cdot 0.191=0$	
1	0.314	$1^{2} \cdot 0.314=0.314$	
2	0.363	$2^{2} \cdot 0.363=1.452$	
3	0.123	$3^{2} \cdot 0.123=1.107$	
4	0.009	$4^{2} \cdot 0.009=0.144$	
	$\sum\left[x^{2} \cdot P(x)\right]=3.017$		

Example: As the owner of successful small business, you cannot afford to take a sick day. Suppose the random variable x represents the number of $\$ 1000$ units you sell in a day. Additionally, suppose that based on years of company records, the probability distribution is summarized in the table (below).

Determine the variance for the distribution.

| x | $P(x)$ | $x^{2} \cdot P(x)$ |
| :--- | :--- | :--- | :--- |
| 0 | 0.191 | $0^{2} \cdot 0.191=0$ |
| 1 | 0.314 | $1^{2} \cdot 0.314=0.314$ |
| 2 | 0.363 | $2^{2} \cdot 0.363=1.452$ |
| 3 | 0.123 | $3^{2} \cdot 0.123=1.107$ |
| 4 | 0.009 | $4^{2} \cdot 0.009=0.144$ |
| | | |
| | | |
| | | |

Tim Busken
Table of Contents

Attachments and Links

$$
\text { Variance } \begin{aligned}
\sigma^{2} & =\sum\left[x^{2} \cdot P(x)\right]-\mu^{2} \\
& =3.017-1.445^{2} \\
& =0.9289975
\end{aligned}
$$

5.2 Random

 VariablesRandom Experiments

Probability

Distributions
Random Variables Discrete Probability Distributions Probability Histogram
Mean, Variance and Standard Deviation

Identilying Unusual

Results
Expected Value

x	$P(x)$	$x^{2} \cdot P(x)$	
0	0.191	$0^{2} \cdot 0.191=0$	
1	0.314	$1^{2} \cdot 0.314=0.314$	
2	0.363	$2^{2} \cdot 0.363=1.452$	Aft
3	0.123	$3^{2} \cdot 0.123=1.107$	
4	0.009	$4^{2} \cdot 0.009=0.144$	
	$\sum\left[x^{2} \cdot P(x)\right]=3.017$		

Tim Busken
Table of Contents

Attachments and

 Links$$
\text { Variance } \begin{aligned}
\sigma^{2} & =\sum\left[x^{2} \cdot P(x)\right]-\mu^{2} \\
& =3.017-1.445^{2} \\
& =0.9289975
\end{aligned}
$$

```
We take the square root of }\mp@subsup{\sigma}{}{2}\mathrm{ to get the stan-
dard deviation. }\sigma=\sqrt{}{0.9289975}\approx0.963
```

| x | $P(x)$ | $x^{2} \cdot P(x)$ |
| :--- | :--- | :--- | :--- |
| 0 | 0.191 | $0^{2} \cdot 0.191=0$ |
| 1 | 0.314 | $1^{2} \cdot 0.314=0.314$ |
| 2 | 0.363 | $2^{2} \cdot 0.363=1.452$ |
| 3 | 0.123 | $3^{2} \cdot 0.123=1.107$ |
| 4 | 0.009 | $4^{2} \cdot 0.009=0.144$ |
| | $\sum\left[\begin{array}{l}\text { Afterwards, subtract } \mu^{2} \text { from } \sum\left[x^{2} \cdot P(x)\right] .\end{array}\right]$ | |

Tim Busken
Table of Contents

Tim Busken
Table of Contents

Tim Busken
Table of Contents

Tim Busken

Table of Contents

x	$P(x)$	$x^{2} \cdot P(x)$	Lz	L3	4	4
0	0.191	$0^{2} \cdot 0.191=0$. 191	0	0	
1	0.314	$1^{2} \cdot 0.314=0.314$. 14	. 314		
2	0.363	$2^{2} \cdot 0.363=1.452$. 123	. 86	1.4	
3	0.123	$3^{2} \cdot 0.123=1.107$. 0.0	. 0 E	. 14	
4	0.009	$4^{2} \cdot 0.009=0.144$				
		$\sum\left[x^{2} \cdot P(x)\right]=3.01$	L4 $=6$, , 31, 1, 45...			

Tim Busken
Table of Contents

Tim Busken

Table of Contents

Calculator

- Use your arrow keys to arrow up and over until your cursor is highlighting L4.

Variance $\sigma^{2}=\sum\left[x^{2} \cdot P(x)\right]-\mu^{2}$

- Press 2nd $1, x^{2} x$ 2nd 2 enter
- Calculate 1 -variable statistics on L4 and take $\sum x$ to be $\sum\left[x^{2} \cdot P(x)\right]$. Subtract μ^{2} from this value to obtain the variance.

x	$P(x)$	$x^{2} \cdot P(x)$
0	0.191	$0^{2} \cdot 0.191=0$
1	0.314	$1^{2} \cdot 0.314=0.314$
2	0.363	$2^{2} \cdot 0.363=1.452$
3	0.123	$3^{2} \cdot 0.123=1.107$
4	0.009	$4^{2} \cdot 0.009=0.144$
	$\sum\left[x^{2} \cdot P(x)\right]=3.017$	

Tim Busken
Table of Contents

Calculator

- Use your arrow keys to arrow up and over until your cursor is highlighting L4.

Variance $\sigma^{2}=\sum\left[x^{2} \cdot P(x)\right]-\mu^{2}$

- Press 2nd $1 \times x^{2} x$ 2nd 2 enter
- Calculate 1 -variable statistics on L4 and take $\sum x$ to be $\sum\left[x^{2} \cdot P(x)\right]$. Subtract μ^{2} from this value to obtain the variance.

x	$P(x)$	$x^{2} \cdot P(x)$	1-war* State
0	0.191	$0^{2} \cdot 0.191=0$	$\bar{x}=.60 \cdot 3$
1	0.314	$1^{2} \cdot 0.314=0.314$	$\cdots \quad \sum \times=3,017$
2	0.363	$2^{2} \cdot 0.363=1.452$	듄 $2=5$
3	0.123	$3^{2} \cdot 0.123=1.107$	$5 \times=6$
4	0.009	$4^{2} \cdot 0.009=0.144$	$\begin{gathered} \sigma \times= \\ +\cdots=5 \end{gathered}$

Round off Rule for μ, σ, and σ^{2}
Round results by carrying one more decimal place than the number of decimal places used for the random variable x. If the values of x are integers, round μ, σ and σ^{2} to one decimal place. Do not round off any intermediate calculations

Identifying Unusual Results

Table of

 Contents

Chapter 5
Tim Busken
Table of Contents
Attachments and Links
5.2 Random Variables
Random Experiments
Probability
Distributions
Random Variables
Discrete Probability Distributions
Probability Histogram
Mean, Variance and Standard Deviation
Identifying Unusual Results
Expected Value
5.3 The

Binomial
Distribution
5.4 Mean,

Identifying Unusual Results

Range Rule of Thumb

We can identify "unusual" values by determining if they lie outside these limits:

$$
\begin{array}{ll}
\text { Maximum usual value, } x_{\max } & x_{\max }=\mu+2 \sigma \\
\text { Minimum usual value }, x_{\min } & x_{\min }=\mu-2 \sigma
\end{array}
$$

Example: Focus groups of 14 people are randomly selected to discuss products of the Yummy Company. It is determined that the mean number (per group) who recognize the Yummy brand name is 10.9, and the standard deviation is 0.98 .

Quiz Would it be unusual to randomly select 14 people and find that fewer than 7 recognize the Yummy brand name?

Chapter 5
Tim Busken
Table of Contents
Attachments and Links
5.2 Random Variables
Random Experiments
Probability
Distributions
Random Variables
Discrete Probability Distributions
Probability Histogram
Mean, Variance and Standard Deviation
Identifying Unusual Results
Expected Value
5.3 The

Binomial
Distribution
5.4 Mean,

Variance, and
Standard Deviation for the Binomial Distribution Works Cited

Identifying Unusual Results

Range Rule of Thumb

We can identify "unusual" values by determining if they lie outside these limits:

$$
\begin{array}{ll}
\text { Maximum usual value, } x_{\max } & x_{\max }=\mu+2 \sigma \\
\text { Minimum usual value }, x_{\min } & x_{\min }=\mu-2 \sigma
\end{array}
$$

Example: Focus groups of 14 people are randomly selected to discuss products of the Yummy Company. It is determined that the mean number (per group) who recognize the Yummy brand name is 10.9, and the standard deviation is 0.98 .

Quiz Would it be unusual to randomly select 14 people and find that fewer than 7 recognize the Yummy brand name?

x is the random variable representing the number of people (from a sample of 14) that recognize the Yummy brand name. $x_{\text {min }}=\mu-2 \sigma=10.9-2 \cdot 0.98=8.94$ and $x_{\text {max }}=\mu+2 \sigma=10.9+2 \cdot 0.98=12.86$. Since 7 people is less than $x_{\min }$, it is considered unusual to randomly select 14 people and find that fewer than 7 recognize the Yummy brand name.

Identifying Unusual Results

Table of Contents

Using Probabilities to Determine When Results Are Unusual

(1) Unusually high: x successes among n trials is an unusually high number of successes if $P(x$ or more $) \leq 0.05$.
(2) Unusually low: x successes among n trials is an unusually low number of successes if $P(x$ or fewer $) \leq 0.05$.

Chapter 5
Tim Busken

Table of

Contents
Attachments and Links
5.2 Random Variables
Random Experiments
Probability
Distributions
Random Variables
Discrete Probability Distributions
Probability Histogram
Mean, Variance and Standard Deviation Identifying Unusual Results
Expected Value

Identifying Unusual Results

Using Probabilities to Determine When Results Are Unusual

(1) Unusually high: x successes among n trials is an unusually high number of successes if $P(x$ or more $) \leq 0.05$.
(2) Unusually low: x successes among n trials is an unusually low number of successes if $P(x$ or fewer $) \leq 0.05$.

Example: Suppose that weight of adolescents is being studied by a health organization and that the accompanying tables describes the probability distribution for three randomly selected adolescents, where x is the number who are considered morbidly obese.

x	$P(x)$
0	0.111
1	0.215
2	0.450
3	0.224

Quiz Is it unusual to have no obese subjects among three randomly selected adolescents?
\square

Chapter 5
Tim Busken

Table of

 ContentsAttachments and Links
5.2 Random Variables
Random Experiments
Probability
Distributions
Random Variables
Discrete Probability Distributions
Probability Histogram
Mean, Variance and Standard Deviation Identifying Unusual Results
Expected Value

Identifying Unusual Results

Using Probabilities to Determine When Results Are Unusual

(1) Unusually high: x successes among n trials is an unusually high number of successes if $P(x$ or more $) \leq 0.05$.
(2) Unusually low: x successes among n trials is an unusually low number of successes if $P(x$ or fewer $) \leq 0.05$.

Example: Suppose that weight of adolescents is being studied by a health organization and that the accompanying tables describes the probability distribution for three randomly selected adolescents, where x is the number who are considered morbidly obese.

\leadsto	x	$P(x)$
	0	0.111
dered	1	0.215
	2	0.450
	3	0.224

Quiz Is it unusual to have no obese subjects among three randomly selected adolescents?
\square

Chapter 5
Tim Busken

Table of

 ContentsAttachments and Links
5.2 Random Variables
Random Experiments
Probability
Distributions
Random Variables
Discrete Probability Distributions
Probability Histogram
Mean, Variance and Standard Deviation Identifying Unusual Results
Expected Value

Identifying Unusual Results

Using Probabilities to Determine When Results Are Unusual

(1) Unusually high: x successes among n trials is an unusually high number of successes if $P(x$ or more $) \leq 0.05$.
(2) Unusually low: x successes among n trials is an unusually low number of successes if $P(x$ or fewer $) \leq 0.05$.

Example: Suppose that weight of adolescents is being studied by a health organization and that the accompanying tables describes the probability distribution for three randomly selected adolescents, where x is the number who are considered morbidly obese.

\leadsto	x	$P(x)$
	0	0.111
dered	1	0.215
	2	0.450
	3	0.224

Quiz Is it unusual to have no obese subjects among three randomly selected adolescents?

It is not unusual since $0.111 \nsubseteq 0.05$

Chapter 5
Tim Busken

Expected Value

Definition

The expected value of a discrete random variable is denoted by E , and it represents the mean value of the outcomes. It is obtained by finding the value of $\sum[x \cdot P(x)]$.

Expected Value

Definition

The expected value of a discrete random variable is denoted by E , and it represents the mean value of the outcomes. It is obtained by finding the value of $\sum[x \cdot P(x)]$.

Example: Suppose you pay $\$ 2.00$ to roll a fair die with the understanding that you will get back $\$ 4$ for rolling a 2 or a 4 , nothing otherwise.

Begin Quiz

1. What is your expected winnings from a single roll? Hint: let x be the discrete random variable representing the amount of money won or lost.
(a) $-\$ 0.67$
(b) $\$ 2.00$
(c) $\$ 4.00$
(d) $-\$ 2.00$

End Quiz Score: Correct

Chapter 5
Tim Busken

Expected Value

Definition

The expected value of a discrete random variable is denoted by E , and it represents the mean value of the outcomes. It is obtained by finding the value of $\sum[x \cdot P(x)]$.

Expected Value

Definition

The expected value of a discrete random variable is denoted by E , and it represents the mean value of the outcomes. It is obtained by finding the value of $\sum[x \cdot P(x)]$.

Example: Suppose you pay $\$ 2.00$ to roll a fair die with the understanding that you will win $\$ 4$ for rolling a 2 or a 4 , and win nothing otherwise.

Begin Quiz

1. What is your expected winnings from a single roll? Hint: let x be the discrete random variable representing the amount of money won or lost.
(a) $-\$ 0.67$
(b) $\$ 2.00$
(c) $\$ 4.00$
(d) $-\$ 2.00$

End Quiz Score: Correct

Event	x	$P(x)$	$x \cdot P(x)$
Lose	$-\$ 2$	$4 / 6$	$-\$ 1.33$
Gain (net)	$\$ 2$	$2 / 6$	$\$ 0.67$
total			$-\$ 0.67$

Table of

Contents
Attachments and Links
5.2 Random Variables
Random Experiments Probability Distributions
Random Variables

> Now try questions 1, 2 and 3 on the worksheet that is attached to this document (or click here.)

5.3 The Binomial Distribution

The main topic of Chapter 5 is the study of Discrete Probability Distributions -which are tables of probabilities associated with random variables that take on discrete (or integer) values.

Many probability distributions are so important in theory or applications that they have been given specific names (see wikipedia topic: list of probability distributions). One specific Discrete Probability Distribution from this list is called the Binomial Distribution, the topic of Section 5.3. The binomial distribution is the probability distribution that results from doing a "binomial experiment."

Chapter 5
Tim Busken

Binomial Experiments

Table of

 ContentsAttachments and Links
5.2 Random Variables
Random Experiments
Probability
Distributions
Random Variables
Discrete Probability Distributions
Probability Histogram
Mean, Variance and Standard Deviation Identifying Unusual Results
Expected Value
5.3 The

Binomial Distribution

Definition

Binomial experiments have the following properties:

Chapter 5

Tim Busken

Binomial Experiments

Table of

 ContentsAttachments and Links

5.2 Random Variables
Random Experiments
Probability
Distributions
Random Variables
Discrete Probability Distributions
Probability Histogram
Mean, Variance and Standard Deviation
Identifying Unusual
Results
Expected Value
5.3 The

Binomial Distribution
5.4 Mean,

Variance, and
Standard Deviation for the Binomial Distribution

Definition

Binomial experiments have the following properties:
(1) The procedure has a fixed number of trials.
(2) The trials must be independent. (The outcome of any individual trial doesnt affect the probabilities in the other trials.)
(3) Each trial must have only two possible outcomes (commonly referred to as success and failure).
(4) The probability of a success remains the same in all trials.

The word success in this context is arbitrary and does not necessarily represent something good. Either of the two possible categories may be called a success.

Chapter 5

Tim Busken

Binomial Experiments

Table of

 ContentsAttachments and Links

5.2 Random Variables
Random Experiments
Probability
Distributions
Random Variables
Discrete Probability Distributions
Probability Histogram
Mean, Variance and Standard Deviation
Identifying Unusual
Results
Expected Value
5.3 The

Binomial Distribution
5.4 Mean,

Variance, and
Standard Deviation for the Binomial Distribution

Definition

Binomial experiments have the following properties:
(1) The procedure has a fixed number of trials.
(2) The trials must be independent. (The outcome of any individual trial doesnt affect the probabilities in the other trials.)
(3) Each trial must have only two possible outcomes (commonly referred to as success and failure).
(4) The probability of a success remains the same in all trials.

The word success in this context is arbitrary and does not necessarily represent something good. Either of the two possible categories may be called a success.

Chapter 5

Tim Busken

Binomial Experiments

Table of

 ContentsAttachments and Links

5.2 Random Variables
Random Experiments
Probability
Distributions
Random Variables
Discrete Probability Distributions
Probability Histogram
Mean, Variance and Standard Deviation
Identifying Unusual
Results
Expected Value
5.3 The

Binomial Distribution
5.4 Mean,

Variance, and
Standard Deviation for the Binomial Distribution

Definition

Binomial experiments have the following properties:
(1) The procedure has a fixed number of trials.
(2) The trials must be independent. (The outcome of any individual trial doesnt affect the probabilities in the other trials.)
(3) Each trial must have only two possible outcomes (commonly referred to as success and failure).
(4) The probability of a success remains the same in all trials.

The word success in this context is arbitrary and does not necessarily represent something good. Either of the two possible categories may be called a success.

Chapter 5

Tim Busken

Binomial Experiments

Table of

 ContentsAttachments and Links

5.2 Random Variables
Random Experiments
Probability
Distributions
Random Variables
Discrete Probability Distributions
Probability Histogram
Mean, Variance and Standard Deviation
Identifying Unusual
Results
Expected Value
5.3 The

Binomial Distribution
5.4 Mean,

Variance, and
Standard Deviation for the Binomial Distribution

Definition

Binomial experiments have the following properties:
(1) The procedure has a fixed number of trials.
(2) The trials must be independent. (The outcome of any individual trial doesnt affect the probabilities in the other trials.)
(3) Each trial must have only two possible outcomes (commonly referred to as success and failure).
(4) The probability of a success remains the same in all trials.

The word success in this context is arbitrary and does not necessarily represent something good. Either of the two possible categories may be called a success.

Chapter 5

Tim Busken

Binomial Experiments

Table of

 ContentsAttachments and Links

5.2 Random Variables
Random Experiments
Probability
Distributions
Random Variables
Discrete Probability Distributions
Probability Histogram
Mean, Variance and Standard Deviation
Identifying Unusual
Results
Expected Value
5.3 The

Binomial Distribution
5.4 Mean,

Variance, and
Standard Deviation for the Binomial Distribution

Definition

Binomial experiments have the following properties:
(1) The procedure has a fixed number of trials.
(2) The trials must be independent. (The outcome of any individual trial doesnt affect the probabilities in the other trials.)
(3) Each trial must have only two possible outcomes (commonly referred to as success and failure).
(4) The probability of a success remains the same in all trials.

The word success in this context is arbitrary and does not necessarily represent something good. Either of the two possible categories may be called a success.

Binomial Experiments

Table of Contents Links
5.2 Random Variables
Random Experiments
Probability
Distributions
Random Variables
Discrete Probability Distributions
Probability Histogram
Mean, Variance and
Standard Deviation
Identifying Unusual
Results
Expected Value

Notation for Binomial Probability Distributions

S and F (success and failure) denote the two possible categories of all outcomes; p and q will denote the probabilities of S and F, respectively.

$P(S)=p$	($p=$ probability of success)
$P(F)=1-p=q$	($q=$ probability of failure)
n	denotes the fixed number of trials.
x	denotes a specific number of successes in n trials, so x can be any whole number between 0 and n, inclusive.
p	denotes the probability of success in one of the n trials.
q	denotes the probability of failure in one of the n trials.
$P(x)$	denotes the probability of getting exactly x successes among the n trials.

The Binomial Probability Formula

$$
P(x)=\left({ }_{n} C_{x}\right) \cdot p^{x} \cdot q^{n-x}
$$

for $x=0,1,2, \ldots, n$, and recall that ${ }_{n} C_{x}=\frac{n!}{(n-x)!\cdot x!}$.

Binomial Experiments

Table of

An Example of a Binomial Experiment

People with type O-negative blood are said to be "universal donors." About 7\% of the U.S. population has this blood type. Suppose that 50 people show up at a blood drive. Let $x=$ the number of universal donors among a random group of 50 people.
n This is the number of trials. For this example, $n=50$ (the number of blood donors).
p This is the "success" probability. For this example, $p=0.07$ (the probability that a randomly selected American has type O-negative blood). Note that p must be in decimal form.
x This is the number of "successes," or type-O negative donors

Chapter 5
Tim Busken

Binomial Experiments

Table of Contents

Attachments and Links

5.2 Random

 VariablesRandom Experiments
Probability
Distributions
Random Variables
Discrete Probability Distributions
Probability Histogram
Mean, Variance and Standard Deviation Identifying Unusual Results

Expected Value
5.3 The

Binomial Distribution
5.4 Mean, Variance, and Standard Deviation for the Binomial Distribution

Classroom Exercise

Now try the problems on the worksheet that is attached to this document, or click here.
http://users.rowan.edu/~schultzl/TI/binomial.pdf In addition, check out the useful calculator tutorial by Dr. Laura Schultz from Rowan University in N.J. (the pdf is also attached to this pdf document.)

Chapter 5
Tim Busken
Table of Contents

Attachments and Links

5.4 Mean, Variance, and Standard Deviation for the Binomial Distribution

We defined and gave the formulas for the Mean, Variance, and Standard Deviation for Any Discrete Probability Distribution in Section 5.2. Measures of Center and Variation for probability distributions

$$
\begin{array}{rlrl}
\mu & =\sum[x \cdot P(x)] & & \text { Mean } \\
\sigma^{2} & =\sum\left[(x-\mu)^{2} \cdot P(x)\right] & & \text { Variance } \\
\sigma^{2} & =\sum\left[x^{2} \cdot P(x)\right]-\mu^{2} & & \text { Variance (shortcut formula) } \\
\sigma & =\sqrt{\sigma^{2}}=\sqrt{\sum\left[x^{2} \cdot P(x)\right]-\mu^{2}} & \text { Standard Deviation }
\end{array}
$$

Chapter 5

Tim Busken

Table of

 ContentsAttachments and Links
5.2 Random Variables
Random Experiments
Probability
Distributions
Random Variables
Discrete Probability Distributions
Probability Histogram
Mean, Variance and Standard Deviation

Identifying Unusual

Results
Expected Value
5.3 The

Binomial
Distribution
5.4 Mean, Variance, and Standard Deviation for the Binomial Distribution

When applied to the Binomial Probability Distribution, these formulas reduce to the following.

```
Measures of Center and Variation for the Binomial Probability Distribution
\mu=n\cdotp Mean
\sigma}=n\cdotp\cdotq\quad\mathrm{ Variance
\sigma=\sqrt{}{\mp@subsup{\sigma}{}{2}}=\sqrt{}{npq}\quad\mathrm{ Standard Deviation}
```


Table of

 ContentsAttachments and Links
5.2 Random Variables
Random Experiments
Probability
Distributions
Random Variables
Discrete Probability Distributions
Probability Histogram
Mean, Variance and Standard Deviation
Identifying Unusual
Results
Expected Value
5.3 The

Binomial
Distribution
5.4 Mean, Variance, and Standard

When applied to the Binomial Probability Distribution, these formulas reduce to the following.

```
Measures of Center and Variation for the Binomial Probability Distribution
\mu=n\cdotp Mean
\sigma}=n\cdotp\cdotq\quad\mathrm{ Variance
\sigma=\sqrt{}{\mp@subsup{\sigma}{}{2}}=\sqrt{}{npq}}\mathrm{ Standard Deviation
```

Before you attempt to complete the homework for Section 5.4, please read pages 197, 224, and 225 from the Triola[2] textbook. (A copy is also attached to this document with the name mendel.pdf.)

固 L. Schuttz, Using your ti-83/84 calculator: Binomial probability distributions.
http:
//users.rowan.edu/~schultzl/TI/binomial.pdf. Accessed: 03/16/13.
(R. M. F. Triola, Essentials of Statistics, Addison-Wesley, fourth ed., 2011.

