1.3 Distance and Midpoint Formulas

Tim Busken

Graduate Teacher
Department of Mathematics
San Diego State University
Dynamical Systems Program
August 29, 2011

- In mathematics, a theorem is a statement that has been proven on the basis of previously established statements, such as other theorems, and previously accepted statements, such as axioms.
- In mathematics, a theorem is a statement that has been proven on the basis of previously established statements, such as other theorems, and previously accepted statements, such as axioms.
-,,$+- \times, \div$ are called the arithmetic operators.
- In mathematics, a theorem is a statement that has been proven on the basis of previously established statements, such as other theorems, and previously accepted statements, such as axioms.
-,,$+- \times, \div$ are called the arithmetic operators.
- When a letter represents any number from a set of numbers, it is called a variable.
- In mathematics, a theorem is a statement that has been proven on the basis of previously established statements, such as other theorems, and previously accepted statements, such as axioms.
-,,$+- \times, \div$ are called the arithmetic operators.
- When a letter represents any number from a set of numbers, it is called a variable.
- A constant is either a fixed number, such as 5 , or a letter or symbol that represents a fixed number.
- An algebraic expression is any combination of variables, constants, grouping symbols, exponents and arithmetic operators.
- An algebraic expression is any combination of variables, constants, grouping symbols, exponents and arithmetic operators.
- In general, a term is a constant or the product of a constant and one or more variables raised to a power.
- An algebraic expression is any combination of variables, constants, grouping symbols, exponents and arithmetic operators.
- In general, a term is a constant or the product of a constant and one or more variables raised to a power. For example, consider the algebraic expression: $t+29-5 a^{2} b+2 x / y$.
- An algebraic expression is any combination of variables, constants, grouping symbols, exponents and arithmetic operators.
- In general, a term is a constant or the product of a constant and one or more variables raised to a power. For example, consider the algebraic expression: $t+29-5 a^{2} b+2 x / y$. The terms contained in the given expression are $t, 29,5 a^{2} b$, and $2 x / y$.
- An algebraic expression is any combination of variables, constants, grouping symbols, exponents and arithmetic operators.
- In general, a term is a constant or the product of a constant and one or more variables raised to a power. For example, consider the algebraic expression: $t+29-5 a^{2} b+2 x / y$. The terms contained in the given expression are $t, 29,5 a^{2} b$, and $2 x / y$.
- To evaluate an algebraic expression, substitute a numerical value for each variable into the expression and simplify the result by applying the order of operations in a left to right fashion.
- An equation is a statement (or sentence) indicating that two algebraic expressions are equal.
- An equation is a statement (or sentence) indicating that two algebraic expressions are equal.
- Suppose that a and b represent any real numbers, with the exception $a \neq 0$. A linear equation in one variable is an equation of the form $a x+b=0$.
- An equation is a statement (or sentence) indicating that two algebraic expressions are equal.
- Suppose that a and b represent any real numbers, with the exception $a \neq 0$. A linear equation in one variable is an equation of the form $a x+b=0$. For example, when $a=1$ and $b=-4$, the resulting linear equation in x is $x-4=0$.
- An equation is a statement (or sentence) indicating that two algebraic expressions are equal.
- Suppose that a and b represent any real numbers, with the exception $a \neq 0$. A linear equation in one variable is an equation of the form $a x+b=0$. For example, when $a=1$ and $b=-4$, the resulting linear equation in x is $x-4=0$.
- If we replace the variable in a linear equation with a value that results in a true statement, we say that the value is a solution or root to the equation or that it satisfies the equation.
- An equation is a statement (or sentence) indicating that two algebraic expressions are equal.
- Suppose that a and b represent any real numbers, with the exception $a \neq 0$. A linear equation in one variable is an equation of the form $a x+b=0$. For example, when $a=1$ and $b=-4$, the resulting linear equation in x is $x-4=0$.
- If we replace the variable in a linear equation with a value that results in a true statement, we say that the value is a solution or root to the equation or that it satisfies the equation.
- Ex: How do you solve $2 x-4=0$ for x ?
- An equation is a statement (or sentence) indicating that two algebraic expressions are equal.
- Suppose that a and b represent any real numbers, with the exception $a \neq 0$. A linear equation in one variable is an equation of the form $a x+b=0$. For example, when $a=1$ and $b=-4$, the resulting linear equation in x is $x-4=0$.
- If we replace the variable in a linear equation with a value that results in a true statement, we say that the value is a solution or root to the equation or that it satisfies the equation.
- Ex: How do you solve $2 x-4=0$ for x ?
use the addn./subt. and mult./div. props of equality-Section 1.1
- An equation can be an classified as (1) an IDENTITY, otherwise it is classified as (2) CONDITIONAL, or (3) a CONTRADICTION.
- An equation can be an classified as (1) an IDENTITY, otherwise it is classified as (2) CONDITIONAL, or (3) a CONTRADICTION.
- An equation is called an IDENTITY when it is true for ALL VALUES of the variable for which the equation is defined.
- An equation can be an classified as (1) an IDENTITY, otherwise it is classified as (2) CONDITIONAL, or (3) a CONTRADICTION.
- An equation is called an IDENTITY when it is true for ALL VALUES of the variable for which the equation is defined. For example, the equation $x^{2}-49=(x-7)(x+7)$ is an identity since it's a mathematical statement that is true for every real number x.
- An equation can be an classified as (1) an IDENTITY, otherwise it is classified as (2) CONDITIONAL, or (3) a CONTRADICTION.
- An equation is called an IDENTITY when it is true for ALL VALUES of the variable for which the equation is defined. For example, the equation $x^{2}-49=(x-7)(x+7)$ is an identity since it's a mathematical statement that is true for every real number x.
- An equation is called CONDITIONAL when it is true for SOME VALUES of a variable, BUT NOT ALL.
- An equation can be an classified as (1) an IDENTITY, otherwise it is classified as (2) CONDITIONAL, or (3) a CONTRADICTION.
- An equation is called an IDENTITY when it is true for ALL VALUES of the variable for which the equation is defined. For example, the equation $x^{2}-49=(x-7)(x+7)$ is an identity since it's a mathematical statement that is true for every real number x.
- An equation is called CONDITIONAL when it is true for SOME VALUES of a variable, BUT NOT ALL. For example $x^{2}+3 x+2=0$ is conditional since it is an equation that is only true for real numbers $x=-1,-2$

Equations involving Absolute Value

- Ex1: Solve $|x|=-2$ for x.
- Ex2: Solve $|x|=4$ for x.
- Ex3: Solve $|x|=0$ for x.

Equations involving Absolute Value

- Ex1: Solve $|x|=-2$ for x.
- Ex2: Solve $|x|=4$ for x.
- Ex3: Solve $|x|=0$ for x.

Theorem

Suppose k represent any positive real number. Then $|x|=k$ if and only if $x= \pm k$.

Equations involving Absolute Value

- Ex1: Solve $|x|=-2$ for x.
- Ex2: Solve $|x|=4$ for x.
- Ex3: Solve $|x|=0$ for x.

Theorem

Suppose k represent any positive real number. Then $|x|=k$ if and only if $x= \pm k$.

Comment: the variable x in the above theorem can represent any algebraic expression.

Ex: Solve $|x-5|=4$ for x.

The Cartesian Coordinate System

Read/view the definitions, graphs and corresponding discussion about the Cartesian Coordinate System on pages 102-103 of the text book.

Theorem (Distance Formula: 1 dimension)
If a and b are real numbers, then the distance between them on a number line is $|a-b|$.

Distance Formula: 2 dimensions

Consider the points $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ in the figure below. Let d be the distance between points A and B (the HYPOTENUSE LENGTH of the right triangle). Since A and C lie on a horizontal line, the distance between them is $\left|x_{2}-x_{1}\right|$. Likewise, $\overline{C B}=\left|y_{2}-y_{1}\right|$.

Since the sum of the squares of the legs of a right triangle is equal to the square of the hypotenuse (Pyth. thm), then from the diagram

$$
d^{2}=\left|x_{2}-x_{1}\right|^{2}+\left|y_{2}-y_{1}\right|^{2}
$$

Theorem (Distance Formula: 2 dimensions)

The distance d between the points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is given by the formula

$$
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

Example: Find the exact distance between the points

 $(5,-3)$ and $(-1,-6)$Solution

$$
\text { Let }\left(x_{1}, y_{1}\right)=(5,-3) \text { and }\left(x_{2}, y_{2}\right)=(-1,-6) \text {. }
$$

Then

$$
\begin{aligned}
d & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& =\sqrt{(-1-5)^{2}+(-6-(-3))^{2}} \\
& =\sqrt{(-6)^{2}+(-3)^{2}} \\
& =\sqrt{36+9}=\sqrt{45}=3 \sqrt{5}
\end{aligned}
$$

Figure:

Theorem (Midpoint Formula: 1 dimension)

If a and b are real numbers, then the midpoint between them on a number line is $\frac{a+b}{2}$.

Theorem (Midpoint Formula: 2 dimensions)

Suppose $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ are any two points in two-dimensional space. Then the midpoint of the line segment that joins them is:

$$
m=\left(\frac{\left(x_{2}+x_{1}\right)}{2}, \frac{\left(y_{2}+y_{1}\right)}{2}\right)
$$

Example: Find the midpoint between the points $(5,-3)$ and ($-1,-6$)

Solution
Let $\left(x_{1}, y_{1}\right)=(5,-3)$ and $\left(x_{2}, y_{2}\right)=(-1,-6)$.
Then

$$
\begin{aligned}
m & =\left(\frac{\left(x_{2}+x_{1}\right)}{2}, \frac{\left(y_{2}+y_{1}\right)}{2}\right) \\
& =\left(\frac{5+(-1)}{2}, \frac{-3+(-6)}{2}\right) \\
& =\left(\frac{4}{2}, \frac{-9}{2}\right) \\
& =\left(2,-\frac{9}{2}\right)
\end{aligned}
$$

- An ordered pair is a solution to an equation in two variables if the equation is correct when the variables are replaced by the coordinates of the ordered pair.
- An ordered pair is a solution to an equation in two variables if the equation is correct when the variables are replaced by the coordinates of the ordered pair.
- The solution set to an equation in two variables is the set of all ordered pairs that satisfy the equation.
- An ordered pair is a solution to an equation in two variables if the equation is correct when the variables are replaced by the coordinates of the ordered pair.
- The solution set to an equation in two variables is the set of all ordered pairs that satisfy the equation.
- The graph of (the solution set to) an equation in two variables is a two-dimensional geometric object that gives us a visual image of an algebraic object.

The Circle

- An ordered pair is a solution to an equation in two variables if the equation is correct when the variables are replaced by the coordinates of the ordered pair.
- The solution set to an equation in two variables is the set of all ordered pairs that satisfy the equation.
- The graph of (the solution set to) an equation in two variables is a two-dimensional geometric object that gives us a visual image of an algebraic object.

Definition (Circle)

A circle is defined by the set of all points in the xy plane that lie a fixed distance from a given point (the center). The fixed distance is called the radius, and the given point is the center.

The distance formula can be used to write an equation for a circle with center (h, k) and radius r for $r>0$.

A point (x, y) is on the circle if and only if it satisfies the equation $\sqrt{(x-h)^{2}+(y-k)^{2}}=r$.

Since both sides of the equation (previous slide) are positive, we can square each side to get the standard form for the equation of a circle.

Since both sides of the equation (previous slide) are positive, we can square each side to get the standard form for the equation of a circle.

Theorem (Equation for a Circle in Standard Form)

The equation for a circle with center (h, k) and radius r (where $r>0$) is

$$
(x-h)^{2}+(y-k)^{2}=r^{2}
$$

A circle centered at the origin has equation $x^{2}+y^{2}=r^{2}$.

Example: Sketch the graph of the equation

$$
(x-1)^{2}+(y+2)^{2}=3
$$

Perfect Square Trinomials

Recall (chapter p.4) that algebraic expressions of the form $a^{2}+2 a b+b^{2}$ have factorization $(a+b)^{2}$ and are called perfect square trinomials.

Perfect Square Trinomials

Recall (chapter p.4) that algebraic expressions of the form $a^{2}+2 a b+b^{2}$ have factorization $(a+b)^{2}$ and are called perfect square trinomials. For instance,

$$
x^{2}+10 x+25
$$

is an example of a perfect square trinomial.

Perfect Square Trinomials

Recall (chapter p.4) that algebraic expressions of the form $a^{2}+2 a b+b^{2}$ have factorization $(a+b)^{2}$ and are called perfect square trinomials. For instance,

$$
x^{2}+10 x+25
$$

is an example of a perfect square trinomial. The expression is called a trinomial because it is a polynomial (see chapter p.4) with three terms.

Perfect Square Trinomials

Recall (chapter p.4) that algebraic expressions of the form $a^{2}+2 a b+b^{2}$ have factorization $(a+b)^{2}$ and are called perfect square trinomials. For instance,

$$
x^{2}+10 x+25
$$

is an example of a perfect square trinomial. The expression is called a trinomial because it is a polynomial (see chapter p.4) with three terms. But $x^{2}+10 x+25$ also has a perfect square factorization $(x+5)^{2}$; hence the name (or classification) of $x^{2}+10 x+25$ as a perfect square trinomial.

Completing the Square

Completing the Square means finding the third term of a perfect square trinomial when given the first two.

Completing the Square

Completing the Square means finding the third term of a perfect square trinomial when given the first two. For example, consider the following algebraic expression with two terms:

$$
x^{2}+10 x
$$

Completing the Square

Completing the Square means finding the third term of a perfect square trinomial when given the first two. For example, consider the following algebraic expression with two terms:

$$
x^{2}+10 x
$$

If we add 25 to the given expression, well them we have completed the square since $x^{2}+10 x+25=(x+5)^{2}$.

Completing the Square

Completing the Square means finding the third term of a perfect square trinomial when given the first two. For example, consider the following algebraic expression with two terms:

$$
x^{2}+10 x
$$

If we add 25 to the given expression, well them we have completed the square since $x^{2}+10 x+25=(x+5)^{2}$. The generalized rule for completing a square is as follows:

Theorem (Completing the square)

Let b be any real number. Given the first two terms of a quadratic expression $x^{2}+b x$, the third term that must be added to the expression in order to render the expression a perfect square trinomial is $\left(\frac{b}{2}\right)^{2}$. That is,

$$
x^{2}+b x+\left(\frac{b}{2}\right)^{2}=\left(x+\frac{b}{2}\right)^{2}
$$

In class examples: Webwork Homework Set 1.3, problems 1,4,5,6,8
Please print out and bring to class a pdf copy of your Webwork Homework Set 1.3

