College Algebra - Review 1

Name:

1. Suppose $g(x) = \begin{cases} 1 - 3x & \text{if } x < 0 \\ \sqrt{4 - x^2} & \text{if } 0 \le x \le 2 \\ \frac{x^2}{4} - 4 & \text{if } x > 2 \end{cases}$. Evaluate the piecewise de-

fined function at the values indicated below.

(a) g(-9) (a) _____

(b) g(0) (b) _____

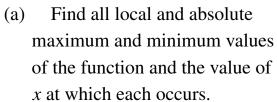
(c) g(1) (c) _____

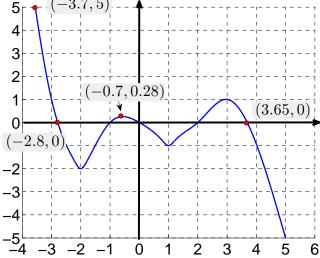
(d) g(-4)

(d) _____

(e) g(4)

- (e) _____
- 2. Sketch the graph of the piecewise function defined above.


3. Write the domain of $f(x) = \frac{1}{x-5}$ using interval notation.


4. Write the domain of $f(x) = \sqrt{x-5}$ using interval notation. 4.

5. Evaluate and simplify the expression $\frac{f(x+h)-f(x)}{h}$ for $f(x)=2x^2-1$. Assume x, h and x + h are real numbers in the domain of f and that $h \neq 0$. Hint: You know you are finished when you can replace h with zero and not get a division by zero.

6. Find the zeros of $g(x) = \sqrt{9 - x^2}$.

7. (12 points) The graph of a function *f* is given in the figure (right). Assume the entire graph of the function is shown.

(b) State the *x* intervals for which f(x) > 0.

(c) State the *x* intervals for which f(x) < 0.

- (d) Find the intervals on which the function is *increasing*.
- (e) Find the intervals on which the function is *decreasing*.
- (f) Find f(4).

(f) _____

(g) Find f(5).

(g) _____

8. Find the average rates of change 0f $f(x) = x^3 - 3x$ from $x_1 = -2$ to $x_2 = -1$

8. _____

9. Determine if $f(x) = -x + x^3$ is even, odd or neither. If the graph of the function has symmetry, state which kind it has.

9. _____

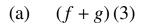
10. What is the domain and range of $f(x) = \sqrt{x}$? Use interval notation to answer.

10. _____

Write an equation for the function described by the given characteristics.

11. The shape of $f(x) = \sqrt{x}$, but shifted five units right, reflected in the x axis and 12 units down.

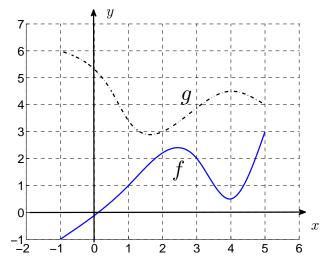
11. _____


Directions: Sketch the graph of the function, not by plotting points, but by starting with the graph of a standard function and applying transformations. Label at least 3 points on your final graph.

12.
$$C(x) = 2|x + 2| - 3$$

Find $f \circ g$ and $g \circ f$ and their domains.

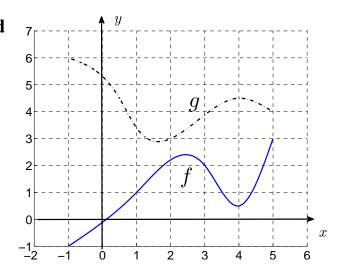
13.
$$f(x) = \frac{1}{x}$$
 and $g(x) = 4x - 9$.


14. Use the graph to find the indicated functional values.

(b)
$$(f-g)(-1)$$

(c)
$$\frac{f}{g}$$
 (5)

(d) Find the domain and range of f


15. Use the graph to find the indicated functional values.

(a)
$$f(g(3))$$

(b)
$$f(g(-1))$$

(c)
$$g(f(3))$$

(d) g(g(3))

16. Find f/g and its domains. $f(x) = \sqrt{7-x}$ and $g(x) = \sqrt{7+x}$

17. Find the inverse function of $f(x) = \frac{3x}{x-2}$

17. _____

18. Find the vertex of $g(x) = 3(x-5)^2 + 7$. Does f open up or down?

18. _____

19. What is the range of $g(x) = 3(x - 5)^2 + 7$?

19. _____

Express the quadratic function in standard (vertex) form.

$$20. \quad g(x) = x^2 + 3x - 6$$

20. _____

21.
$$g(x) = 2x^2 + 3x - 7$$

21. _____

22. Find the quotient and remainder of $\frac{x^3 + x^2 - 10x + 8}{x - 3}$ using long division.