# Section 4.1 Systems of Linear Equations in Two Variables 

Professor Tim Busken

Department of Mathematics
Grossmont College

September 18, 2012

### 4.1 Systems of Linear Equations in Two Variables

## Learning Objectives:

- Solve Systems of linear equations in two variables by graphing.
- Solve systems of linear equations in two variables by the addition method.
- Solve systems of linear equations in two variables by the substitution method.


## Recall

## Definition (The Equation of a Line: Standard Form)

Suppose $A, B$ and $C$ represent any real numbers. A linear equation in two variables is an equation having the form

$$
A y+B x=C
$$

For example, $1 y-1 x=3$ is a linear equation in the two variables $x$ and $y$.

### 4.1 Systems of Linear Equations in Two Variables

Definition
Any two linear equations considered together (or paired together) form a linear system of equations.

### 4.1 Systems of Linear Equations in Two Variables

Definition
Any two linear equations considered together (or paired together) form a linear system of equations. For example,

$$
\begin{aligned}
& 1 y-1 x=3 \\
& 1 y+1 x=1
\end{aligned}
$$

is a linear system of equations.

### 4.1 Systems of Linear Equations in Two Variables

Definition
Any two linear equations considered together (or paired together) form a linear system of equations. For example,

$$
\begin{aligned}
& 1 y-1 x=3 \\
& 1 y+1 x=1
\end{aligned}
$$

is a linear system of equations.

## Definition

The solution set to a linear system of equations is a set of ordered pairs that satisfy both equations.

## Definition

The solution set to a linear system of equations is a set of ordered pairs that satisfy both equations.

Classroom Example: Confirm whether or not the ordered pair, $(1,1)$, belongs to the following system of equations:

$$
\begin{aligned}
& 1 y-1 x=3 \\
& 1 y+1 x=1
\end{aligned}
$$

Is $(-1,2)$ an ordered pair that belongs to the solution set?

## We can find the solution graphically!

We can also find the solution to the system by sketching the graph of both lines and finding their intersection point.


## We can find the solution graphically!

We can also find the solution to the system by sketching the graph of both lines and finding their intersection point.


## We can find the solution graphically!

We can also find the solution to the system by sketching the graph of both lines and finding their intersection point.


## We can find the solution graphically!

We can also find the solution to the system by sketching the graph of both lines and finding their intersection point.


### 4.1 Systems of Linear Equations in Two Variables

## Definition

Generalized Form for a System of Two Linear Equations Suppose $A_{1}, A_{2}, B_{1}, B_{2}, C_{1}$ and $C_{2}$ are real numbers. A system of linear equations in two variables has the form

$$
\begin{aligned}
& A_{1} \cdot y+B_{1} \cdot x=C_{1} \\
& A_{2} \cdot y+B_{2} \cdot x=C_{2}
\end{aligned}
$$

### 4.1 Systems of Linear Equations in Two Variables

## Definition

Generalized Form for a System of Two Linear Equations Suppose $A_{1}, A_{2}, B_{1}, B_{2}, C_{1}$ and $C_{2}$ are real numbers. A system of linear equations in two variables has the form

$$
\begin{aligned}
& A_{1} \cdot y+B_{1} \cdot x=C_{1} \\
& A_{2} \cdot y+B_{2} \cdot x=C_{2}
\end{aligned}
$$



Case 1
One Solution
(1) Case 1 The two lines intersect at one and only one point. The coordinates of the point give the solution to the system. This is what usually happens. In this case, we say the system is consistent.


Case 1
One Solution


Case 2
No Solution
(1) Case 1 The two lines intersect at one and only one point. The coordinates of the point give the solution to the system. This is what usually happens. In this case, we say the system is consistent.
(2) Case 2 The lines are parallel and therefore have no points in common. the solution set to the system is the empty set, $\varnothing$. In this case, we say the system is inconsistent.


Case 1
One Solution


Case 2
No Solution


Case 3 Infinite Solutions
(1) Case 1 The two lines intersect at one and only one point. The coordinates of the point give the solution to the system. This is what usually happens. In this case, we say the system is consistent.
(2) Case 2 The lines are parallel and therefore have no points in common. the solution set to the system is the empty set, $\varnothing$. In this case, we say the system is inconsistent.
(3) Case 3 The lines are coincident, meaning they are on top of each other. That is, their graphs represent the same line. The solution set consists of all ordered pairs that satisfy either equation. In this case, the equations are said to be dependent.

First, write both equations in slope-intercept form $(y=m x+b)$.


Case 1
One Solution

First, write both equations in slope-intercept form ( $y=m x+b$ ).

- Case 1 If the slopes of both lines are not equivalent, the system is consistent.


Case 1
One Solution


Case 2
No Solution

First, write both equations in slope-intercept form ( $y=m x+b$ ).

- Case 1 If the slopes of both lines are not equivalent, the system is consistent.
- Case 2 If the slopes of both lines are equivalent, and the intercepts are not equal, then the lines are parallel, and the system is inconsistent.


Case 1
One Solution


Case 2
No Solution


Case 3 Infinite Solutions

First, write both equations in slope-intercept form ( $y=m x+b$ ).

- Case 1 If the slopes of both lines are not equivalent, the system is consistent.
- Case 2 If the slopes of both lines are equivalent, and the intercepts are not equal, then the lines are parallel, and the system is inconsistent.
- Case 3 If the slopes of both lines are equivalent, and the intercepts are equal, then the lines are coincident (on top of each other), and the system is dependent.


### 4.1 Systems of Linear Equations in Two Variables

Classroom Example: Determine, without graphing, which of the 3 cases exist for the following system of linear equations:

$$
\begin{aligned}
& 2 y-x=-6 \\
& 2 y-x=-4
\end{aligned}
$$

### 4.1 Systems of Linear Equations in Two Variables

Classroom Example: Solve the system:

$$
\begin{aligned}
3 y+4 x & =10 \\
y+2 x & =4
\end{aligned}
$$

## Solving a System of Linear Equations by the Addition Method

Step 1: Decide which variable to eliminate. (In some cases, one variable will be easier to eliminate than the other. With some practice, you will notice which one it is.)

Step 2: Use the multiplication property of equality on each equation separately to make the coefficients of the variable that is to be eliminated opposites.

Step 3: Add the respective left and right sides of the system together.
Step 4: Solve for the remaining variable.
Step 5: Substitute the value of the variable from step 4 into an equation containing both variables and solve for the other variable. (Or repeat steps 2-4 to eliminate the other variable.)

Step 6: Check your solution in both equations, if necessary.

### 4.1 Systems of Linear Equations in Two Variables

Try this on your own: Solve the system:

$$
\begin{aligned}
3 y-9 x & =-18 \\
y-7 x & =42
\end{aligned}
$$

### 4.1 Systems of Linear Equations in Two Variables

Try this on your own: Solve the system:

$$
\begin{aligned}
& 3 x-5 y=2 \\
& 2 x+4 y=1
\end{aligned}
$$

### 4.1 Systems of Linear Equations in Two Variables

Classroom Example (Special Case): Solve the system:

$$
\begin{array}{r}
2 x+7 y=3 \\
4 x+14 y=1
\end{array}
$$

### 4.1 Systems of Linear Equations in Two Variables

Classroom Example (Special Case): Solve the system:

$$
\begin{array}{r}
2 x+7 y=3 \\
4 x+14 y=6
\end{array}
$$

### 4.1 Systems of Linear Equations in Two Variables

| What happens: | Geometric Interpretation | Classification |
| :--- | :--- | :--- |
| Both variables are elimin- <br> ated and the resulting <br> statement is false. | The lines are parallel, <br> and there is not a <br> solution to the system. | The system is <br> inconsistent. |
| Both variables are elimin- <br> ated and the resulting <br> statement is true. | The lines coincide, <br> and there is an <br> infinite number of <br> solutions. | The system is <br> dependent. |

### 4.1 Systems of Linear Equations in Two Variables

Classroom Example: Solve the following system using the Substitution Method:

$$
\begin{aligned}
2 x-3 y & =-6 \\
y & =3 x-5
\end{aligned}
$$

## Solving a System of Equations by the Substitution Method

Step 1: Solve either one of the equations for $x$ or $y$. (This step is not necessary if one of the equations is already in the correct form, as in the last example.

## Solving a System of Equations by the Substitution Method

Step 1: Solve either one of the equations for $x$ or $y$. (This step is not necessary if one of the equations is already in the correct form, as in the last example.

Step 2: Substitute the expression for the variable obtained in step 1 into the other equation and solve it.

Step 3: Substitute the solution for step 2 into any equation in the system that contains both variables and solve it.

Step 4: Check your results, if necessary.

