# Paired Data and the <br> Rectangular Coordinate System 

Professor Tim Busken

Department of Mathematics
Grossmont College
January 29, 2013

## Paired Data and the Rectangular Coordinate System

## Learning Objectives:

- Graph ordered pairs on a rectangular coordinate system.
- Graph linear equations by finding intercepts or by making a table.
- Graph horizontal and vertical lines.


## Ordered Pairs

We now turn our attention to equations containing two variables, $x$ and $y$. Paired data plays an important role in these type of equations.

## Ordered Pairs

## Definition

A pair of numbers enclosed in parenthesis and separated by a comma, such as $(-2,1)$, is called an ordered pair of numbers. The first number in the pair is called the $x$-coordinate of the ordered pair; the second number is called the $y$-coordinate. For the ordered pair $(-2,1)$, the $x$-coordinate is -2 and the $y$-coordinate is 1 .

## The Rectangular Coordinate System

We use a rectangular coordinate system to visualize ordered pairs.


## The Rectangular Coordinate System

A rectangular coordinate system is made by drawing two real number lines at right angles to each other.


## The Rectangular Coordinate System

A rectangular coordinate system is made by drawing two real number lines at right angles to each other.


## The Rectangular Coordinate System

A rectangular coordinate system is made by drawing two real number lines at right angles to each other.


## The Rectangular Coordinate System

Two number lines, called axes, cross each other at zero.


## The Rectangular Coordinate System

Two number lines, called axes, cross each other at zero. This point is called the origin.


## The Rectangular Coordinate System

Relative to the origin, positive directions are to the right and up.


## The Rectangular Coordinate System

Negative directions are to the left and down.


## The Rectangular Coordinate System

The horizontal number line is called the $x$-axis


## The Rectangular Coordinate System

The horizontal number line is called the $x$-axis


## The Rectangular Coordinate System

The horizontal number line is called the $x$-axis and the vertical number line is called the $y$-axis.


## The Rectangular Coordinate System

The horizontal number line is called the $x$-axis and the vertical number line is called the $y$-axis.


## The Rectangular Coordinate System

The two number lines divide the coordinate system into four quadrants, which we number I through IV in a counterclockwise direction.


## The Rectangular Coordinate System

The two number lines divide the coordinate system into four quadrants, which we number I through IV in a counterclockwise direction.


## The Rectangular Coordinate System

The two number lines divide the coordinate system into four quadrants, which we number I through IV in a counterclockwise direction.


## The Rectangular Coordinate System

The two number lines divide the coordinate system into four quadrants, which we number I through IV in a counterclockwise direction.


## The Rectangular Coordinate System

The two number lines divide the coordinate system into four quadrants, which we number I through IV in a counterclockwise direction.


## Graphing Ordered Pairs

## Algorithm

To graph the ordered pair $(a, b)$ on the rectangular coordinate system, we:

## Graphing Ordered Pairs

## Algorithm

To graph the ordered pair $(a, b)$ on the rectangular coordinate system, we:
(1) begin at the origin and move along the $x$-axis a units right or a units left (right if $a$ is positive and left if $a$ is negative).

## Graphing Ordered Pairs

## Algorithm

To graph the ordered pair $(a, b)$ on the rectangular coordinate system, we:
(1) begin at the origin and move along the $x$-axis a units right or a units left (right if $a$ is positive and left if $a$ is negative).
(2) From that point we move $b$ units up or down (up if $b$ is positive and down if $b$ is negative).
(3) The point where we end up is the graph of the ordered pair.


## Example 1: Plot (graph) the following ordered pairs: $(2,3),(-2,3),(-2,-3),(2,-3)$,

To plot $(2,3)$, begin at the origin.


## Example 1: Plot (graph) the following ordered pairs: $(2,3),(-2,3),(-2,-3),(2,-3)$,

To plot (2,3), begin at the origin. Travel along the $x$-axis 2 units right


## Example 1: Plot (graph) the following ordered pairs: $(2,3),(-2,3),(-2,-3),(2,-3)$,

To plot (2,3), begin at the origin. Travel along the $x$-axis 2 units right


## Example 1: Plot (graph) the following ordered pairs: $(2,3),(-2,3),(-2,-3),(2,-3)$,

To plot (2,3), begin at the origin. Travel along the $x$-axis 2 units right


## Example 1: Plot (graph) the following ordered pairs: $(2,3),(-2,3),(-2,-3),(2,-3)$,

From that point, move in the upwards (positive y) direction 3 units.


## Example 1: Plot (graph) the following ordered pairs: $(2,3),(-2,3),(-2,-3),(2,-3)$,

From that point, move in the upwards (positive y) direction 3 units.


## Example 1: Plot (graph) the following ordered pairs: $(2,3),(-2,3),(-2,-3),(2,-3)$,

From that point, move in the upwards (positive y) direction 3 units.


## Example 1: Plot (graph) the following ordered pairs: $(2,3),(-2,3),(-2,-3),(2,-3)$,

From that point, move in the upwards (positive y) direction 3 units.


## Example 1: Plot (graph) the following ordered pairs: $(2,3),(-2,3),(-2,-3),(2,-3)$,

From that point, move in the upwards (positive y) direction 3 units.


## Example 1: Plot (graph) the following ordered pairs: $(2,3),(-2,3),(-2,-3),(2,-3)$,

To plot $(-2,3)$, begin at the origin.


## Example 1: Plot (graph) the following ordered pairs: $(2,3),(-2,3),(-2,-3),(2,-3)$,

To plot $(-2,3)$, begin at the origin. Travel along the $x$-axis 2 units left (in the negative direction).


## Example 1: Plot (graph) the following ordered pairs: $(2,3),(-2,3),(-2,-3),(2,-3)$,

To plot $(-2,3)$, begin at the origin. Travel along the $x$-axis 2 units left (in the negative direction).


## Example 1: Plot (graph) the following ordered pairs: $(2,3),(-2,3),(-2,-3),(2,-3)$,

To plot $(-2,3)$, begin at the origin. Travel along the $x$-axis 2 units left (in the negative direction).


## Example 1: Plot (graph) the following ordered pairs: $(2,3),(-2,3),(-2,-3),(2,-3)$,

From that point, move in the upwards (positive $y$ ) direction 3 units.


## Example 1: Plot (graph) the following ordered pairs: $(2,3),(-2,3),(-2,-3),(2,-3)$,

From that point, move in the upwards (positive $y$ ) direction 3 units.


## Example 1: Plot (graph) the following ordered pairs: $(2,3),(-2,3),(-2,-3),(2,-3)$,

From that point, move in the upwards (positive $y$ ) direction 3 units.


## Example 1: Plot (graph) the following ordered pairs: $(2,3),(-2,3),(-2,-3),(2,-3)$,

From that point, move in the upwards (positive $y$ ) direction 3 units.


## Example 1: Plot (graph) the following ordered pairs: $(2,3),(-2,3),(-2,-3),(2,-3)$,

To plot $(-2,-3)$, begin at the origin.


## Example 1: Plot (graph) the following ordered pairs: $(2,3),(-2,3),(-2,-3),(2,-3)$,

To plot $(-2,-3)$, begin at the origin. Travel along the $x$-axis 2 units left (in the negative direction).


## Example 1: Plot (graph) the following ordered pairs: $(2,3),(-2,3),(-2,-3),(2,-3)$,

To plot $(-2,-3)$, begin at the origin. Travel along the $x$-axis 2 units left (in the negative direction).


## Example 1: Plot (graph) the following ordered pairs: $(2,3),(-2,3),(-2,-3),(2,-3)$,

To plot $(-2,-3)$, begin at the origin. Travel along the $x$-axis 2 units left (in the negative direction).


## Example 1: Plot (graph) the following ordered pairs: $(2,3),(-2,3),(-2,-3),(2,-3)$,

From that point, move in the downwards (negative $y$ ) direction 3 units.


## Example 1: Plot (graph) the following ordered pairs: $(2,3),(-2,3),(-2,-3),(2,-3)$,

From that point, move in the downwards (negative $y$ ) direction 3 units.


## Example 1: Plot (graph) the following ordered pairs: $(2,3),(-2,3),(-2,-3),(2,-3)$,

From that point, move in the downwards (negative $y$ ) direction 3 units.


## Example 1: Plot (graph) the following ordered pairs: $(2,3),(-2,3),(-2,-3),(2,-3)$,

From that point, move in the downwards (negative $y$ ) direction 3 units.


## Example 1: Plot (graph) the following ordered pairs: $(2,3),(-2,3),(-2,-3),(2,-3)$,

From that point, move in the downwards (negative $y$ ) direction 3 units.


## Example 1: Plot (graph) the following ordered pairs: $(2,3),(-2,3),(-2,-3),(2,-3)$,

To plot $(2,-3)$, begin at the origin.


## Example 1: Plot (graph) the following ordered pairs: $(2,3),(-2,3),(-2,-3),(2,-3)$,

To plot (2, -3 ), begin at the origin. Travel along the $x$-axis 2 units right (in the positive direction).


## Example 1: Plot (graph) the following ordered pairs: $(2,3),(-2,3),(-2,-3),(2,-3)$,

To plot (2, -3 ), begin at the origin. Travel along the $x$-axis 2 units right (in the positive direction).


## Example 1: Plot (graph) the following ordered pairs: $(2,3),(-2,3),(-2,-3),(2,-3)$,

To plot (2, -3 ), begin at the origin. Travel along the $x$-axis 2 units right (in the positive direction).


## Example 1: Plot (graph) the following ordered pairs: $(2,3),(-2,3),(-2,-3),(2,-3)$,

From that point, move in the downwards (negative $y$ ) direction 3 units.


## Example 1: Plot (graph) the following ordered pairs: $(2,3),(-2,3),(-2,-3),(2,-3)$,

From that point, move in the downwards (negative $y$ ) direction 3 units.


## Example 1: Plot (graph) the following ordered pairs: $(2,3),(-2,3),(-2,-3),(2,-3)$,

From that point, move in the downwards (negative $y$ ) direction 3 units.


## Example 1: Plot (graph) the following ordered pairs: $(2,3),(-2,3),(-2,-3),(2,-3)$,

From that point, move in the downwards (negative $y$ ) direction 3 units.


## Example 1: Plot (graph) the following ordered pairs: $(2,3),(-2,3),(-2,-3),(2,-3)$,

From that point, move in the downwards (negative $y$ ) direction 3 units.


## Graphing Ordered Pairs



## Example 2: Plot (graph) the following ordered pairs: $(3,0),(0,2),(-3,0),(0,-2)$,

To plot $(3,0)$, begin at the origin.


## Example 2: Plot (graph) the following ordered pairs: $(3,0),(0,2),(-3,0),(0,-2)$,

To plot $(3,0)$, begin at the origin. Travel along the $x$-axis 3 units right, in the positive direction.


## Example 2: Plot (graph) the following ordered pairs: $(3,0),(0,2),(-3,0),(0,-2)$,

To plot $(3,0)$, begin at the origin. Travel along the $x$-axis 3 units right, in the positive direction.


## Example 2: Plot (graph) the following ordered pairs: $(3,0),(0,2),(-3,0),(0,-2)$,

To plot $(3,0)$, begin at the origin. Travel along the $x$-axis 3 units right, in the positive direction.


## Example 2: Plot (graph) the following ordered pairs: $(3,0),(0,2),(-3,0),(0,-2)$,

To plot $(3,0)$, begin at the origin. Travel along the $x$-axis 3 units right, in the positive direction.


## Example 2: Plot (graph) the following ordered pairs: $(3,0),(0,2),(-3,0),(0,-2)$,

To plot $(3,0)$, begin at the origin. Travel along the $x$-axis 3 units right, in the positive direction.



## Example 2: Plot (graph) the following ordered pairs: $(3,0),(0,2),(-3,0),(0,-2)$,

To plot $(0,2)$, begin at the origin. Travel along the $x$-axis 0 units.


## Example 2: Plot (graph) the following ordered pairs: $(3,0),(0,2),(-3,0),(0,-2)$,

From that point (the origin), move up 2 spaces in the positive $y$ direction.


## Example 2: Plot (graph) the following ordered pairs: $(3,0),(0,2),(-3,0),(0,-2)$,

From that point (the origin), move up 2 spaces in the positive $y$ direction.


## Example 2: Plot (graph) the following ordered pairs: $(3,0),(0,2),(-3,0),(0,-2)$,

From that point (the origin), move up 2 spaces in the positive $y$ direction.


## Example 2: Plot (graph) the following ordered pairs: $(3,0),(0,2),(-3,0),(0,-2)$,

From that point (the origin), move up 2 spaces in the positive $y$ direction.



## Example 2: Plot (graph) the following ordered pairs: $(3,0),(0,2),(-3,0),(0,-2)$,

To plot $(-3,0)$, begin at the origin.


## Example 2: Plot (graph) the following ordered pairs: $(3,0),(0,2),(-3,0),(0,-2)$,

To plot $(-3,0)$, begin at the origin. Travel along the $x$-axis 3 units left (the negative $x$ direction).


## Example 2: Plot (graph) the following ordered pairs: $(3,0),(0,2),(-3,0),(0,-2)$,

To plot $(-3,0)$, begin at the origin. Travel along the $x$-axis 3 units left (the negative $x$ direction).


## Example 2: Plot (graph) the following ordered pairs: $(3,0),(0,2),(-3,0),(0,-2)$,

To plot $(-3,0)$, begin at the origin. Travel along the $x$-axis 3 units left (the negative $x$ direction).


## Example 2: Plot (graph) the following ordered pairs: $(3,0),(0,2),(-3,0),(0,-2)$,

To plot $(-3,0)$, begin at the origin. Travel along the $x$-axis 3 units left (the negative $x$ direction).


## Example 2: Plot (graph) the following ordered pairs: $(3,0),(0,2),(-3,0),(0,-2)$,

To plot $(-3,0)$, begin at the origin. Travel along the $x$-axis 3 units left (the negative $x$ direction).


## Example 2: Plot (graph) the following ordered pairs: $(3,0),(0,2),(-3,0),(0,-2)$,

From that point (the origin), move up 0 spaces in the $y$ direction.



## Example 2: Plot (graph) the following ordered pairs: $(3,0),(0,2),(-3,0),(0,-2)$,

To plot $(0,-2)$, begin at the origin. Travel along the $x$-axis 0 units.


## Example 2: Plot (graph) the following ordered pairs: $(3,0),(0,2),(-3,0),(0,-2)$,

From that point (the origin), move up 2 spaces in the negative $y$ direction (downwards).


## Example 2: Plot (graph) the following ordered pairs: $(3,0),(0,2),(-3,0),(0,-2)$,

From that point (the origin), move up 2 spaces in the negative $y$ direction (downwards).


## Example 2: Plot (graph) the following ordered pairs: $(3,0),(0,2),(-3,0),(0,-2)$,

From that point (the origin), move up 2 spaces in the negative $y$ direction (downwards).


## Example 2: Plot (graph) the following ordered pairs: $(3,0),(0,2),(-3,0),(0,-2)$,

From that point (the origin), move up 2 spaces in the negative $y$ direction (downwards).


## Concept Check

Plot (graph) $(3,4), \quad(-4,3), \quad(-1,-4)$ and $(5,-4)$


## Concept Check

Plot (graph) $(3,4), \quad(-4,3), \quad(-1,-4)$ and $(5,-4)$


## Plot (graph) $(4,0), \quad(0,-3), \quad(-1,0)$, and $(0,5)$



Plot (graph) $(4,0), \quad(0,-3), \quad(-1,0)$, and $(0,5)$


## Definition

Suppose $A, B$ and $C$ represent any real numbers. A linear equation in two variables is an equation having the form

$$
A x+B y=C
$$

For example, $2 x+3 y=1$ is a linear equation in the two variables $x$ and $y$.

## Solutions of a linear equation in two variables

Any linear equation in two variables always has in infinite number of solutions, and solutions come in the form of ordered pairs.

## Solutions of a linear equation in two variables

Any linear equation in two variables always has in infinite number of solutions, and solutions come in the form of ordered pairs.

| Terminology | Definition | Illustration |
| :--- | :--- | :--- |
| Solution of an <br> equation in $x$ and $y$ | An ordered pair $(a, b)$ <br> that yields a true <br> statement if <br> $x=a$ and $y=b$ | $(1,4)$ is a solution of <br> $y=5 x-1$, since <br> substituting $x=1$ and <br> $y=4$ renders the <br>  |
|  |  | LHS $=4$ and the |
|  |  |  |

LHS is an abbreviation for "left-hand side" (of the equation)
RHS is an abbreviation for "right-hand side" (of the equation)

## Equations and Graphs

## Definition

For each ordered-pair solution, $(a, b)$, of an equation in $x$ and $y$ there is a point $(a, b)$ in a rectangular coordinate plane. The set of all such points is called a graph of the equation.

## Equations and Graphs

## Definition

For each ordered-pair solution, $(a, b)$, of an equation in $x$ and $y$ there is a point $(a, b)$ in a rectangular coordinate plane. The set of all such points is called a graph of the equation.

We can graph a linear equation by finding 3 ordered-pair solutions of the equation, plot the corresponding points on the rectangular grid, then draw a line between the three points.

## Equations and Graphs

## Definition

For each ordered-pair solution, $(a, b)$, of an equation in $x$ and $y$ there is a point $(a, b)$ in a rectangular coordinate plane. The set of all such points is called a graph of the equation.

We can graph a linear equation by finding 3 ordered-pair solutions of the equation, plot the corresponding points on the rectangular grid, then draw a line between the three points.

We use the third point for "insurance." If all three points line up in a straight we have not made a mistake!

## Graph the linear equation <br> $y=-\frac{1}{2} x-3$



We begin by a making a table that summarizes $x$ and $y$ values. Since every value of $x$ we substitute into the equation will be multiplied by $-\frac{1}{2}$, we use numbers for $x$ that are divisible by 2 .



That way, when we multiply by $-\frac{1}{2}$, the result will be an integer.



We let $x=-2$ in the equation to find the $y$-value of the ordered pair which is associated with $x$-coordinate -2 .


We let $x=-2$ in the equation to find the $y$-value of the ordered pair which is associated with $x$-coordinate -2 .

$$
\begin{aligned}
y & =-\frac{1}{2} \cdot(x)-3 \\
& =-\frac{1}{2} \cdot(-2)-3 \\
& =1-3 \\
& =-2
\end{aligned}
$$



Upon simplification, we get the ordered pair solution (-2,-2)

$$
\begin{aligned}
y & =-\frac{1}{2} \cdot(x)-3 \\
& =-\frac{1}{2} \cdot(-2)-3 \\
& =1-3 \\
& =-2
\end{aligned}
$$



Next, we let $x=0$ in the equation to find the $y$-value of the ordered pair which is associated with $x$-coordinate 0 .

$$
\begin{aligned}
y & =-\frac{1}{2} \cdot(x)-3 \\
& =-\frac{1}{2} \cdot(0)-3 \\
& =0-3 \\
& =-3
\end{aligned}
$$



This gives us the ordered pair solution $(0,-3)$

$$
\begin{aligned}
y & =-\frac{1}{2} \cdot(x)-3 \\
& =-\frac{1}{2} \cdot(0)-3 \\
& =0-3 \\
& =-3
\end{aligned}
$$

| $x$ | $y$ | $(x, y)$ |
| :--- | :--- | :--- |
| -2 | -2 | $(-2,-2)$ |
| 0 | -3 | $(0,-3)$ |
| 2 |  |  |

Afterwards, we let $x=2$ in the equation.

$$
\begin{aligned}
y & =-\frac{1}{2} \cdot(x)-3 \\
& =-\frac{1}{2} \cdot(2)-3 \\
& =-1-3 \\
& =-4
\end{aligned}
$$

Upon simplification, we get the ordered pair solution (2,-4)

$$
\begin{aligned}
y & =-\frac{1}{2} \cdot(x)-3 \\
& =-\frac{1}{2} \cdot(2)-3 \\
& =-1-3 \\
& =-4
\end{aligned}
$$

We now locate the three ordered pair solutions (points) on the rectangular coordinate grid, then draw a line through the solutions.


We now locate the three ordered pair solutions (points) on the rectangular coordinate grid, then draw a line through the solutions.


We now locate the three ordered pair solutions (points) on the rectangular coordinate grid, then draw a line through the solutions.


We now locate the three ordered pair solutions (points) on the rectangular coordinate grid, then draw a line through the solutions.


We now locate the three ordered pair solutions (points) on the rectangular coordinate grid, then draw a line through the solutions.


## Concept Check: Graph $y=\frac{1}{3} x+3$




## Concept Check: Graph $y=\frac{1}{3} x+3$


(2)

## Definition

The graph of an equation has an x-intercept whenever the graph of the equation crosses the $x$ axis. The $x$ intercept always occurs when the value of $y$ is equal to zero.


## Definition

The graph of an equation has an $\mathbf{y}$-intercept whenever the graph of the equation crosses the $y$ axis. The y intercept always occurs when the value of $x$ is equal to zero.


## Example 4 Find the $x$-and $y$-intercepts for $5 x-7 y=-35$, then graph the solution set.

## Theorem

Suppose $a$ and $b$ are real numbers. Graphs of linear equations of the form $x=a$ are vertical lines and graphs of linear equations of the form $y=b$ are horizontal lines.

graph of $x=3$

graph of $y=3$

## More Classroom Examples

Work Together! Stop at 8:35 a.m. for Quiz 1 Review Graph each of the following lines:

- $y=\frac{1}{2} x$
- $x=-2$
- $y=-4$

