Introduction to Variable Expressions and Equations

Learning Objectives

- 1. Define and use exponents and the order of operations.
- 2. Evaluate algebraic expressions, given replacement values for variables.
- 3. Determine whether a number is a solution of a given equation.
- 4. Translate phrases into expressions and sentences into equations.

Examples:

1. Evaluate.

a)
$$2^3$$
 b) 1^7 c) $\left(\frac{6}{7}\right)^2$ d) $(0.3)^3$

Using order of operation, simplify each expression.

e) $7 + 3 \cdot 2$ f) $25 - 3^2 \cdot 2$ g) 6[-5 + 6(-3 + 8)] h) $\frac{20(-1) - (-4)(-3)}{2[-12 \div (-3 - 3)]}$

- 2. Evaluate each expression when x = 3, y = 2, and z = 6.
 - a) x + y + z b) 3x z c) |5x 2z| d) $\frac{5z}{x} \frac{3y^2}{z}$
- 3. Determine whether the given number is a solution of the given equation.

a)
$$x - 12 = 15$$
; 27 b) $12 + y = 29$; 7 c) $\frac{3}{4}x = \frac{15}{20}$; 5 d) $y = 3y + 2$; 0

- 4. Write each phrase as an algebraic expression.
 - a) The sum of a number and thirteen b) The quotient of forty-two and a number

Write each sentence as an equation.

c) The product of one-third and a number is nine d) A number added to twelve is fourteen.

Teaching Notes:

- Be sure to identify base and exponent when working with exponential notation.
- Most students find order of operations challenging.
- Many students will confuse expression and equation. Be sure students understand that you simplify an expression, but solve an equation.
- Many students have problems with translating sentences into equations.
- Each section in the text has 3 worksheets in the Extra Practice featuring differentiated learning.

<u>Answers:</u> 1a) 8; 1b) 1; 1c) 36/49; 1d) 0.027; 1e) 13; 1f) 7;1g) 150; 1h) -8; 2a) 11; 2b) 3; 2c) 3; 2d) 8; 3a) true; 3b) false; 3c) false; 3d) false; 4a) x + 13; 4b) 42/x; 4c) 1/3 x = 9; 4d) 12 + x = 14

Adding Real Numbers

Learning Objectives:

- 1. Add real numbers with the same sign.
- 2. Add real numbers with unlike signs.
- 3. Solve problems that involve addition of real numbers.
- 4. Find the opposite of a number.

Examples:

1. Add the following real numbers with the same sign.

a)
$$8 + 11$$
 b) $(-3) + (-15)$ c) $(-14) + (-35)$ d) $\left(-\frac{3}{5}\right) + \left(-\frac{1}{2}\right)$

2. Add the following real numbers with different signs.

a)
$$(-9) + 5$$
 b) $16 + (-25)$ c) $(-15.3) + 27.03$ d) $\left(\frac{1}{2}\right) + \left(-\frac{5}{8}\right)$

Mixed exercise of addition of signed numbers.

e)
$$-7 + (-23)$$
 f) $-42 + 38$ g) $53 + (-22)$ h) $\left(-\frac{5}{12}\right) + \left(\frac{3}{8}\right)$

3. Solve each of the following.

a) At the beginning of a chemistry experiment, Amy measured the temperature of a liquid to be -5° C. During the experiment, the temperature rose 14°C. What was the liquid's temperature at the end of the experiment?

b) A local restaurant reported net incomes of -\$1,397, -\$2,042, and -\$809 for the past three months. What was its total net income for the three months?

4. Find the additive inverse or opposite.

a) 8 b) -9 c) 0 d) |-17|

Teaching Notes:

- Some students will need to see addition performed on a number line.
- Some students will need instruction with inputting negative numbers into a calculator.
- Review the definition of absolute value.
- Each section in the text has 3 worksheets in the Extra Practice featuring differentiated learning.

<u>Answers:</u> 1a) 19; 1b) -18; 1c) -49; 1d) -11/10; 2a) -4; 2b) -9; 2c) 11.73; 2d) -1/8; 2e) -30; 2f) -4; 2g) 31; 2h) -1/24; 3a) 9° C; 3b) -\$4,248; 4a) -8; 4b) 9; 4c) 0; 4d) -17

Subtracting Real Numbers

Learning Objectives:

- 1. Subtract real numbers.
- 2. Add and subtract real numbers.
- 3. Evaluate algebraic expressions using real numbers
- 4. Solve problems that involve subtraction of real numbers.

Examples:

1. Subtract.

a) -8 – 4	b) 11–18	c) $-15 - (-10)$	d) -12 - 12
e) 22 – (-13)	f) -132 - (-207)	g) 1.3 – (3.8)	h) $\frac{15}{7} - \left(-\frac{9}{14}\right)$

- 2. Simplify each expression. a) -3 - (-4) - 5 + (-2)b) 7 - 10 - 8 + (-7)c) $-2 + |-3 - 5| - 3^2$
- 3. Evaluate each expression when x = -3, y = -7, and z = 9
 - a) x y b) $\frac{10 x}{y 2}$ c) |x| + |y| |z| d) $x^2 y$
- 4. Solve:
 - a) In a game of cards, Alicia won 11 chips, lost 6 chips, won 3 chips, lost 14 chips, and won 1 chip. What was her final count of chips?

Find the complementary or supplementary angle.

Teaching Notes:

- Remind students to always change subtraction to addition and "add the opposite".
- Some students forget to change the sign of the second value after changing to addition.
- Encourage students to take the time to write the steps: 3 (-2) = 3 + (+2) = 5
- Each section in the text has 3 worksheets in the Extra Practice featuring differentiated learning.

<u>Answers:</u> 1a) -12; 1b) -7; 1c) -5; 1d) -24; 1e) 35; 1f) 75; 1g) -2.5; 1h) 39/14; 2a) -6, 2b) -18, 2c) -3; 3a) 4; 3b) -13/9; 3c) 1; 3d) 16; 4a) -5; 4b) 138°; 4c) 37°

Multiplying and Dividing Real Numbers

Learning Objectives

- 1. Multiply and divide real numbers.
- 2. Evaluate algebraic expressions using real numbers.

Examples

1. Multiply the real numbers.

a) -6(5) b) (-11)(-3) c)
$$-\frac{3}{5}\left(\frac{10}{21}\right)$$
 d) 2(-5)(-1)(-3)

Find the reciprocal of the real number.

e)
$$\frac{3}{7}$$
 f) 5 g) $-\frac{5}{21}$ h) 0.3

Divide the real numbers.

i)
$$\frac{27}{-3}$$
 j) $-90 \div (-5)$ k) $-\frac{1}{2} \div \left(-\frac{8}{15}\right)$ l) $\frac{-22}{0}$

2. Evaluate each expression.

a)
$$2x - y^2$$
, when $x = 4$, $y = -3$
b) $\frac{-2-x}{y-5}$, when $x = -4$, $y = 6$

c)
$$\frac{-6x-4y}{-2z+3-(-10)}$$
 when $x = 5, y = -1, z = 0$ d) -8^2

e)
$$(-7)^2$$
 f) -1^8 g) $(-1)^{87}$

Teaching Notes:

- Most students find multiplying and dividing real numbers relatively easy.
- Many students confuse $\frac{0}{5} = 0$ and $\frac{5}{0} =$ undefined.
- Many students have difficulty with the fact that $-5^2 \neq (-5)^2$
- Each section in the text has 3 worksheets in the Extra Practice featuring differentiated learning.

<u>Answers:</u> 1a) -30; 1b) 33; 1c) -2/7; 1d) -30; 1e) 7/3; 1f) 1/5; 1g) -21/5; 1h) 10/3; 1i) -9; 1j) 18; 1k) 15/16; 1l) undefined; 2a) -1, 2b) 2, 2c) -2, 2d) -64, 2e) 49, 2f) -1, 2g) -1

Properties of Real Numbers

Learning Objectives:

- 1. Use the commutative and associative properties.
- 2. Use the distributive property.
- 3. Use the identity and inverse properties.

Examples:

1. Use the commutative property of addition or multiplication to complete each statement.

a) 3 + y =____ b) a + (-9) =____ c) $-10 \cdot x =$ ____ d) $s \cdot t =$ ____

Use the associative property of addition or multiplication to complete each statement.

e) (3 + x) + y =_____ f) $-2 \cdot (5x) =$ _____

Use the commutative and associative properties to simplify each expression.

g)
$$12 + (4 + x)$$
 h) $-7(5x)$ i) $\left(-\frac{1}{3} + x\right) + \frac{5}{12}$ j) $0.13(-1.2y)$

- 2. Use the distributive property to write each expression without parentheses. Then simplify the result, if possible.
 - a) 8(x + y) b) -3(7x 9) c) -2(-6y 10) d) 6(4x 3y 9)

Use the distributive property to write each sum as a product.

- e) $6 \cdot x + 6 \cdot y$ f) $13 \cdot x + 13 \cdot 4$ g) (-2)x + (-2)y h) $\frac{1}{3}a + \frac{1}{3} \cdot 6$
- 3. Name the property that is illustrated by each true statement.
 - a) 0 + 11 = 11 b) $3 \cdot \frac{1}{3} = 1$ c) 5 + (-5) = 0 d) $12 \cdot 1 = 12$

Teaching Notes:

- Many students use the Properties of Real Numbers without realizing that they are using these properties.
- Some students, when using the distributive property, forget to multiply the second term.
- Each section in the text has 3 worksheets in the Extra Practice featuring differentiated learning.

<u>Answers:</u> 1a) y+3; 1b) -9+a; 1c) x-10; 1d) $t\cdot s$; 1e) 3 + (x + y); 1f) $(-2 \cdot 5) x$; 1g) 16 + x; 1h) -35x; 1i) 1/12 + x; 1j) -0.156y; 2a) 8x + 8y; 2b) -21x + 27; 2c) 12y + 20; 2d) 24x - 18y - 54; 2e) 6(x + y); 2f) 13(x + 4); 2g) -2(x + y); 2h) 1/3(a + 6); 3a) addition property of zero; 3b) inverse property of multiplication; 3c) inverse property of addition; 3d) multiplication property of one