Mini-Lecture 1.4

Introduction to Variable Expressions and Equations

Learning Objectives

1. Define and use exponents and the order of operations.
2. Evaluate algebraic expressions, given replacement values for variables.
3. Determine whether a number is a solution of a given equation.
4. Translate phrases into expressions and sentences into equations.

Examples:

1. Evaluate.
a) 2^{3}
b) 1^{7}
c) $\left(\frac{6}{7}\right)^{2}$
d) $(0.3)^{3}$

Using order of operation, simplify each expression.
e) $7+3 \cdot 2$
f) $25-3^{2} \cdot 2$
g) $6[-5+6(-3+8)]$
h) $\frac{20(-1)-(-4)(-3)}{2[-12 \div(-3-3)]}$
2. Evaluate each expression when $x=3, y=2$, and $z=6$.
a) $x+y+z$
b) $3 x-z$
c) $|5 x-2 z|$
d) $\frac{5 z}{x}-\frac{3 y^{2}}{z}$
3. Determine whether the given number is a solution of the given equation.
a) $x-12=15 ; 27$
b) $12+y=29 ; 7$
c) $\frac{3}{4} x=\frac{15}{20} ; 5$
d) $y=3 y+2 ; 0$
4. Write each phrase as an algebraic expression.
a) The sum of a number and thirteen
b) The quotient of forty-two and a number

Write each sentence as an equation.
c) The product of one-third and a number is nine d) A number added to twelve is fourteen.

Teaching Notes:

- Be sure to identify base and exponent when working with exponential notation.
- Most students find order of operations challenging.
- Many students will confuse expression and equation. Be sure students understand that you simplify an expression, but solve an equation.
- Many students have problems with translating sentences into equations.
- Each section in the text has 3 worksheets in the Extra Practice featuring differentiated learning.

Answers: 1a) 8; 1b) 1; 1c) 36/49; 1d) 0.027; 1e) 13; 1f) 7;1g) 150; 1h) -8 ; 2a) 11; 2b) 3 ; 2c) 3 ; 2d) 8; 3a) true; 3b) false; 3c) false; 3d) false; 4a) $x+13$; 4b) $42 / x$; 4c) $1 / 3 x=9$; 4d) $12+x=14$

Mini-Lecture 1.5

Adding Real Numbers

Learning Objectives:

1. Add real numbers with the same sign.
2. Add real numbers with unlike signs.
3. Solve problems that involve addition of real numbers.
4. Find the opposite of a number.

Examples:

1. Add the following real numbers with the same sign.
a) $8+11$
b) $(-3)+(-15)$
c) $(-14)+(-35)$
d) $\left(-\frac{3}{5}\right)+\left(-\frac{1}{2}\right)$
2. Add the following real numbers with different signs.
a) $(-9)+5$
b) $16+(-25)$
c) $(-15.3)+27.03$
d) $\left(\frac{1}{2}\right)+\left(-\frac{5}{8}\right)$

Mixed exercise of addition of signed numbers.
e) $-7+(-23)$
f) $-42+38$
g) $53+(-22)$
h) $\left(-\frac{5}{12}\right)+\left(\frac{3}{8}\right)$
3. Solve each of the following.
a) At the beginning of a chemistry experiment, Amy measured the temperature of a liquid to be $-5^{\circ} \mathrm{C}$. During the experiment, the temperature rose $14^{\circ} \mathrm{C}$. What was the liquid's temperature at the end of the experiment?
b) A local restaurant reported net incomes of $-\$ 1,397,-\$ 2,042$, and $-\$ 809$ for the past three months. What was its total net income for the three months?
4. Find the additive inverse or opposite.
a) 8
b) -9
c) 0
d) $|-17|$

Teaching Notes:

- Some students will need to see addition performed on a number line.
- Some students will need instruction with inputting negative numbers into a calculator.
- Review the definition of absolute value.
- Each section in the text has 3 worksheets in the Extra Practice featuring differentiated learning.

Answers: 1a) 19; 1b) -18 ; 1c) -49 ; 1d) $-11 / 10$; 2a) -4 ; 2b) -9 ; 2c) 11.73 ; 2d) $-1 / 8$; 2e) -30 ; 2f) -4 ; 2g) 31; 2h) $-1 / 24$; 3a) 9° C; 3b) $-\$ 4,248$; 4a) -8 ; 4b) 9; 4c) 0; 4d) -17

Mini-Lecture 1.6

Subtracting Real Numbers

Learning Objectives:

1. Subtract real numbers.
2. Add and subtract real numbers.
3. Evaluate algebraic expressions using real numbers
4. Solve problems that involve subtraction of real numbers.

Examples:

1. Subtract.
a) $-8-4$
b) $11-18$
c) $-15-(-10)$
d) $-12-12$
e) $22-(-13)$
f) $-132-(-207)$
g) $1.3-(3.8)$
h) $\frac{15}{7}-\left(-\frac{9}{14}\right)$
2. Simplify each expression.
a) $-3-(-4)-5+(-2)$
b) $7-10-8+(-7)$
c) $-2+|-3-5|-3^{2}$
3. Evaluate each expression when $x=-3, y=-7$, and $z=9$
a) $x-y$
b) $\frac{10-x}{y-2}$
c) $|x|+|y|-|z|$
d) $x^{2}-y$
4. Solve:
a) In a game of cards, Alicia won 11 chips, lost 6 chips, won 3 chips, lost 14 chips, and won 1 chip. What was her final count of chips?

Find the complementary or supplementary angle.
b)

c)

Teaching Notes:

- Remind students to always change subtraction to addition and "add the opposite".
- Some students forget to change the sign of the second value after changing to addition.
- Encourage students to take the time to write the steps: $3-(-2)=3+(+2)=5$
- Each section in the text has 3 worksheets in the Extra Practice featuring differentiated learning.

Answers: 1a) -12; 1b) -7 ; 1c) -5 ; 1d) -24 ; 1e) 35 ; 1f) 75 ; 1g) -2.5 ; 1h) $39 / 14$; 2a) $-6,2 b)-18,2 c$ (-3 ; 3a) 4; 3b) -13/9; 3c) 1; 3d) 16; 4a) -5; 4b) 138°; 4c) 37°

Mini-Lecture 1.7

Multiplying and Dividing Real Numbers

Learning Objectives

1. Multiply and divide real numbers.
2. Evaluate algebraic expressions using real numbers.

Examples

1. Multiply the real numbers.
a) $-6(5)$
b) $(-11)(-3)$
c) $-\frac{3}{5}\left(\frac{10}{21}\right)$
d) $2(-5)(-1)(-3)$

Find the reciprocal of the real number.
e) $\frac{3}{7}$
f) 5
g) $-\frac{5}{21}$
h) 0.3

Divide the real numbers.
i) $\frac{27}{-3}$
j) $-90 \div(-5)$
k) $-\frac{1}{2} \div\left(-\frac{8}{15}\right)$

1) $\frac{-22}{0}$
2. Evaluate each expression.
a) $2 x-y^{2}$, when $x=4, y=-3$
b) $\frac{-2-x}{y-5}$, when $x=-4, y=6$
c) $\frac{-6 x-4 y}{-2 z+3-(-10)}$ when $x=5, y=-1, z=0$
d) -8^{2}
e) $(-7)^{2}$
f) -1^{8}
g) $(-1)^{87}$

Teaching Notes:

- Most students find multiplying and dividing real numbers relatively easy.
- Many students confuse $\frac{0}{5}=0$ and $\frac{5}{0}=$ undefined.
- Many students have difficulty with the fact that $-5^{2} \neq(-5)^{2}$
- Each section in the text has 3 worksheets in the Extra Practice featuring differentiated learning.

Answers: 1a) -30; 1b) 33; 1c) $-2 / 7$; 1d) -30 ; 1e) $7 / 3$; 1f) $1 / 5$; 1g) $-21 / 5$; 1h) $10 / 3$; 1 i) -9 ; 1j) 18 ; 1k) $15 / 16$; 1l) undefined; 2a) $-1,2 b$) 2, 2c) -2 , 2d) $-64,2 e) 49,2 f)-1,2 g)-1$

Mini-Lecture 1.8

Properties of Real Numbers

Learning Objectives:

1. Use the commutative and associative properties.
2. Use the distributive property.
3. Use the identity and inverse properties.

Examples:

1. Use the commutative property of addition or multiplication to complete each statement.
a) $3+y=$ \qquad b) $a+(-9)=$ \qquad
c) $-10 \cdot x=$ \qquad
d) $s \cdot t=$ \qquad

Use the associative property of addition or multiplication to complete each statement.
e) $(3+x)+y=$ \qquad
f) $-2 \cdot(5 x)=$ \qquad

Use the commutative and associative properties to simplify each expression.
g) $12+(4+x)$
h) $-7(5 x)$
i) $\left(-\frac{1}{3}+x\right)+\frac{5}{12}$
j) $0.13(-1.2 y)$
2. Use the distributive property to write each expression without parentheses. Then simplify the result, if possible.
a) $8(x+y)$
b) $-3(7 x-9)$
c) $-2(-6 y-10)$
d) $6(4 x-3 y-9)$

Use the distributive property to write each sum as a product.
e) $6 \cdot x+6 \cdot y$
f) $13 \cdot x+13 \cdot 4$
g) $(-2) x+(-2) y$
h) $\frac{1}{3} a+\frac{1}{3} \cdot 6$
3. Name the property that is illustrated by each true statement.
a) $0+11=11$
b) $3 \cdot \frac{1}{3}=1$
c) $5+(-5)=0$
d) $12 \cdot 1=12$

Teaching Notes:

- Many students use the Properties of Real Numbers without realizing that they are using these properties.
- Some students, when using the distributive property, forget to multiply the second term.
- Each section in the text has 3 worksheets in the Extra Practice featuring differentiated learning.

Answers: 1a) $y+3$; 1b) $-9+a$; 1c) $x \cdot-10$; 1d) $t \cdot s$; 1e) $3+(x+y)$; 1f) ($-2 \cdot 5$) x; 1g) $16+x$; $1 h)-35 x$; 1i) $1 / 12+x$; 1j) $-0.156 y$; 2a) $8 x+8 y$; 2b) $-21 x+27$; 2c) $12 y+20$; 2d) $24 x-18 y-54$; 2e) $6(x+y)$; 2f) $13(x+4) ; 2 g)-2(x+y)$; 2h) $1 / 3(a+6)$; 3a) addition property of zero; 3b) inverse property of multiplication; 3c) inverse property of addition; 3d) multiplication property of one

