Mini-Lecture 4.1

Solving Systems of Linear Equations by Graphing

Learning Objectives:

1. Determine if an ordered pair is a solution of a system of equations in two variables.
2. Solve a system of linear equations by graphing.
3. Without graphing, determine the number of solutions of a system.

Examples:

1. Determine whether the ordered pair is a solution of the system of linear equations.
a) $(-4,-5)\left\{\begin{array}{l}x+y=-9 \\ x-y=1\end{array}\right.$
b) $(-5,-3)\left\{\begin{array}{l}2 x+y=-7 \\ 3 x+2 y=-9\end{array}\right.$
c) $(2,-4)\left\{\begin{array}{l}4 x=4-y \\ 2 x=-12-4 y\end{array}\right.$
d) $(-3,1)\left\{\begin{array}{l}3 x=10-y \\ 4 x=15-3 y\end{array}\right.$
2. Solve each system of linear equations by graphing. Note: All systems have a solution.
a) $\left\{\begin{array}{l}4 x+y=-4 \\ 5 x+2 y=-2\end{array}\right.$
b) $\left\{\begin{array}{l}3 x+2 y=22 \\ 2 x+4 y=28\end{array}\right.$
c) $\left\{\begin{array}{l}x=6 \\ \frac{1}{6} x-y=1\end{array}\right.$
d) $\left\{\begin{array}{l}2 x+5 y=32 \\ 3 y=20-2 x\end{array}\right.$
3. Without graphing, determine the number of solutions of a system. Note: the systems have no solution or an infinite number of solutions.
a) $\left\{\begin{array}{l}4 x-16 y=12 \\ y=\frac{1}{4} x-\frac{3}{4}\end{array}\right.$
b) $\left\{\begin{array}{l}-x=y \\ x=6-y\end{array}\right.$

Teaching Notes:

- Many students need to be reminded to use graph paper and be very neat with their graphing skills.
- Remind students to substitute their solution into the original equations to check their results.
- Many students get confused between consistent and inconsistent systems and its meaning for the solution.
- Each section in the text has 3 worksheets in the Extra Practice featuring differentiated learning.

Answers: 1a) yes; 1b) no; 1c) yes; 1d) no; 2a) - 2d) see mini-lecture graphing answers; 3a) infinite; 3b) no solution

Mini-Lecture 4.2

Solving Systems of Linear Equations by Substitution

Learning Objectives:

1. Use the substitution method to solve a system of linear equations.

Examples:

1. Solve each system of equations by the substitution method. Note: the following systems have one equation already solved for one variable.
a) $\left\{\begin{array}{l}x+y=9 \\ y=2 x\end{array}\right.$
b) $\left\{\begin{array}{l}x=y-2 \\ x+y=6\end{array}\right.$

Solve each system of equations by the substitution method.
c) $\left\{\begin{array}{l}x+6 y=2 \\ 4 x+5 y=-11\end{array}\right.$
d) $\left\{\begin{array}{l}x-3 y=3 \\ -5 x-2 y=2\end{array}\right.$
e) $\left\{\begin{array}{l}x-4 y=-1 \\ 6 x-3 y=-6\end{array}\right.$
f) $\left\{\begin{array}{l}6 x+7 y=33 \\ 3 x-3 y=-42\end{array}\right.$
g) $\left\{\begin{array}{l}4 x-3 y=30+x \\ 4 x=-(y+2)+3 x\end{array}\right.$
h) $\left\{\begin{array}{l}x-y=-4 \\ \frac{1}{2} x+\frac{1}{2} y=-3\end{array}\right.$
i) $\left\{\begin{array}{l}4 x+y=11 \\ 12 x+3 y=33\end{array}\right.$
j) $\left\{\begin{array}{l}-6 x-24 y=-10 \\ 5 x+20 y=0\end{array}\right.$

Teaching Notes:

- Remind students to check their solution in the original equations.
- Many students write their final answer as $x=a$ number and $y=a$ number rather than an ordered pair (x, y).
- Many students find working with fractional coefficients challenging.
- Refer students to the textbook's summary "To Solve a System of Two Linear Equations by the Substitution Method".
- Each section in the text has 3 worksheets in the Extra Practice featuring differentiated learning.

Answers: 1a) (3, 6); 1b) (2, 4); 1c) (-4, 1); 1d) (0, -1); 1e) (-1, 0); 1f) (-5, 9) ; 1g) (4, -6);
1h) (-5, -1); 1i) infinite; 1j) no solution.

Mini-Lecture 4.3

Solving Systems of Linear Equations by Addition

Learning Objectives:

1. Use the addition method to solve a system of linear equations.

Examples:

1. Solve each system of equations by the addition method.
a) $\left\{\begin{array}{l}x+y=5 \\ x-y=11\end{array}\right.$
b) $\left\{\begin{array}{l}-x+4 y=28 \\ -6 x-4 y=-56\end{array}\right.$

Solve each system of equation by the addition method. If a system contains fractions or decimals, you may want to first clear each equation of fractions or decimals.
c) $\left\{\begin{array}{l}x+5 y=49 \\ -7 x+4 y=-31\end{array}\right.$
d) $\left\{\begin{array}{l}x+3 y=2 \\ 4 x+2 y=18\end{array}\right.$
e) $\left\{\begin{array}{l}-2 x-7 y=-6 \\ 5 x-3 y=-26\end{array}\right.$
f) $\left\{\begin{array}{l}5 x+8 y=1 \\ 2 x+3 y=2\end{array}\right.$
g) $\left\{\begin{array}{l}-x-2 y=-4 \\ 5 x+10 y=8\end{array}\right.$
h) $\left\{\begin{array}{l}4 x-6 y=1 \\ 20 x-30 y=3\end{array}\right.$
i) $\left\{\begin{array}{l}3 x+\frac{1}{3} y=10 \\ 2 x+\frac{2}{3} y=4\end{array}\right.$
j) $\left\{\begin{array}{l}3.5 x+0.3 y=-18.7 \\ 0.7 x+0.9 y=-7.1\end{array}\right.$

Teaching Notes:

- Encourage students to discuss which variable is the easiest to eliminate and what number an equation should be multiplied by to make the elimination possible.
- Remind students that there can be more than one way to solve a system.
- Remind students to check their solution.
- Each section in the text has 3 worksheets in the Extra Practice featuring differentiated learning.

Mini-Lecture 4.4

Systems of Linear Equations and Problem Solving

Learning Objectives:

1. Use a system of equations to solve problems.

Examples:

1. Solve .
a) Finding Unknown Numbers: The sum of two numbers is 7. Three times the first number equals 4 times the second number. Find the two numbers.
b) Finding Unknown Numbers: One number is four more than a second number. Two times the first number is 2 more than four times the second number.
c) Solving a Problem about Prices: Alicia purchased tickets to a local comedy club for 5 adults and 2 children. The total cost was $\$ 161$. The cost of a child's ticket was $\$ 7$ less than the cost of an adult's ticket. Find the price of an adult's ticket and a child's ticket.
d) Solving a Problem about Prices: Allison throws loose change found in the laundry into container. After one month, she finds it contains all nickels and dimes. In fact, there are 4 times as many dimes as nickels, and the value of the dimes is $\$ 3.50$ more than the value of the nickels. How many nickels and dimes does Allison have?
e) Finding Rates: Kyle and Jason live 28 miles apart in Central Massachusetts. They decide to bicycle towards each other and meet somewhere in between. Kyle' rate of speed is 40% of Jason's. They start out at the same time and meet 2 hours later. Find Kyle’s rate of speed.
f) Finding Amounts of Solutions: Amy has 3 liters of a 35\% solution of sodium hydroxide in a container. What is the amount and concentration of sodium hydroxide solution she must add to this in order to end up with 7 liters of 27% solution?

Teaching Notes:

- Most students struggle with word problems.
- Refer students to the textbook's Problem-Solving Steps for guidance.
- Encourage students to draw and label diagrams or construct charts whenever possible.
- Entertain a discussion around which algebraic method, substitution or addition, is appropriate for the word problem.
- Remind students to always check their answer.
- Each section in the text has 3 worksheets in the Extra Practice featuring differentiated learning.

Mini-Lecture 4.5

Graphing Linear Inequalities

Learning Objectives:

1. Graph a linear inequality in two variables.

Examples:

1. Determine whether the ordered pairs given are solutions of the linear inequality in two variables.
a) $\mathrm{x}-\mathrm{y}>-2$; $(0,-1),(1,4)$
b) $2 \mathrm{x}+4 \mathrm{y} \geq 6$; $(4,-1),(-3,3)$
c) $x>-y ;(0,0),(3,-2)$
d) $\mathrm{y}>\frac{1}{3} \mathrm{x}-1 ;(0,0),(-3,-1)$

Graph each inequality.
e) $x+y \geq 2$
f) $y<-\frac{1}{5} x$
g) $x-y>-3$
h) $2 x+y \leq-5$
i) $-2 x-3 y<6$
j) $x>y$
k) $y \geq 2$
l) $x<5$
m) $y \geq 0$

Teaching Notes:

- Most students who are good at graphing equalities will find this section easy.
- Although many students do not understand the region they are testing in problems 1 a) -1 d), most need practice in testing before they begin graphing inequalities.
- Remind students to always use a test point from their proposed solution region to check their work.
- Remind students that the boundary line is dashed for $<$ or $>$ and solid for \leq or \geq.
- Refer students to the gray instruction block: To Graph a Linear Inequality in Two Variables.
- Each section in the text has 3 worksheets in the Extra Practice featuring differentiated learning.

Answers: 1a) yes, no; 1b) no, yes; 1c) no, yes; 1d) yes, yes; 1e) - 1m) see mini-lecture graphing answers.

Mini-Lecture 4.6

Systems of Linear Inequalities

Learning Objectives:

1. Graph a system of linear inequalities.

Examples:

1. Graph the solution to the following system.
a) $\quad\left\{\begin{array}{l}2 x \leq y \\ x+y \geq 2\end{array}\right.$
b) $\quad\left\{\begin{array}{l}x-y>3 \\ y<2\end{array}\right.$
c) $\left\{\begin{array}{l}x \geq-3 \\ y<2\end{array}\right.$
d) $\left\{\begin{array}{l}3 x>-6 \\ x+y \leq-2\end{array}\right.$

Teaching Notes:

- Students may have difficulty finding the solution region even when both inequalities are graphed correctly. Have students shade each inequality with a different color pencil or shading each at a different angle.
- Each section in the text has three worksheets in the Extra Practice featuring differentiated learning.

