The Greatest Common Factor and Factoring by Grouping

Learning Objectives:

- 1. Find the greatest common factor of a list of integers.
- 2. Find the greatest common factor of a list of terms.
- 3. Factor out the greatest common factor from a polynomial.
- 4. Factor a polynomial by grouping.

Examples:

- 1. Find the greatest common factor for each list.
 - a) 16, 6 b) 18, 24 c) 15, 21 d) 12, 28, 40
- 2. Find the GCF for each list.
 - a) $15m^2$, $25m^5$ b) $40x^2$, $20x^7$ c) $-28x^4$, $56x^5$ d) $21m^2n^5$, $35mn^4$
- 3. Factor out the GCF from each polynomial.

a) 5a + 15 b) 56z + 8 c) $y^3 + 2y$

d) $5x^3 + 10x^4$ e) $16z^5 + 8z^3 - 12z$ f) $x(y^2 - 2) + 3(y^2 - 2)$

g)
$$6a^8b^9 - 8a^3b^4 + 2a^2b^3 + 4a^5b^3$$

- 4. Factor each four-term polynomial by grouping.
 - a) $8y^2 12y + 10y 15$ b) $15a^6 25a^3 6a^3 + 10$ c) $15x^3 25x^2y 6xy^2 + 10y^3$

Teaching Notes:

- Many students remove common factors, not the *greatest* common factor.
- Encourage students to factor in a step-by-step manner: first factor out the GCF for the coefficients, then the GCF for each variable.
- Most students have trouble factoring by grouping when it entails factoring a negative from the second group. Encourage students to always write a sign and check by distributing. If the check has the correct terms but wrong sign; switch the sign.
- Remind students that they can check their work by multiplying.
- Each section in the text has 3 worksheets in the Extra Practice featuring differentiated learning.

<u>Answers:</u> 1a) 2; 1b) 6; 1c) 3; 1d) 4; 2a) $5m^2$; 2b) $20x^2$; 2c) $-28x^4$; 2d) $7mn^4$; 3a) 5(a+3); b) 8(7z+1); 3c) $y(y^2+2)$; 3d) $5x^3(1+2x)$; 3e) $4z(4z^4+2z^2-3)$; 3f) $(y^2-2)(x+3)$; $3g)2a^2b^3(3a^6b^6-4ab+1+2a^3)$; 4a)(2y-3)(4y+5); 4b) $(3a^3-5)(5a^3-2)$; 4c) $(3x-5y)(5x^2-2y^2)$

Factoring Trinomials of the Form $x^2 + bx + c$

Learning Objectives:

- 1. Factor trinomials of the form $x^2 + bx + c$.
- 2. Factor out the greatest common factor and then factor a trinomial of the form $x^2 + bx + c$.

Examples:

- 1. Factor each trinomial completely. If a polynomial can't be factored, write "prime".
 - a) $x^{2} + 11x + 30$ b) $y^{2} + 7y + 10$ c) $x^{2} + 3x - 4$ d) $x^{2} - 4x - 21$ e) $x^{2} - 13x + 30$ f) $x^{2} - x + 32$ g) $m^{2} + 17m + 16$ h) $5x - 14 + x^{2}$ i) $a^{2} + 13ab + 40b^{2}$
- 2. Factor each trinomial completely. Some of these trinomials contain a greatest common factor (other than 1). Don't forget to factor out the GCF first.
 - a) $2x^2 18x + 28$ b) $3x^2 + 6x 9$ c) $x^2 + 10x + 24$
 - d) $2x^2 + 20x 22$ e) $5x^2 + 20x + 15$ f) $-x^3 + 3x^2 + 10x$
 - g) $4x^4 36x^3 + 56x^2$ h) $x^3y + 10x^2y^2 + 24xy^3$ i) $\frac{1}{3}y^2 \frac{8}{3}y 11$

Teaching Notes:

- When factoring trinomials of this form, many students find it helpful to make a table listing all possible factor pairs for c in the first column and their sums in the second column.
- Some students have trouble factoring a trinomial when the last term is negative.
- Remind students that when the last term (the constant) of a trinomial is positive, the factors have the same sign. When the last term (the constant) of a trinomial is negative, the factors have different signs.
- Refer students to: To Factor a Trinomial of the Form $x^2 + bx + c$ in the textbook.
- Remind students that they can always check their work by multiplication.
- Each section in the text has 3 worksheets in the Extra Practice featuring differentiated learning.

<u>Answers:</u> 1a) (x+6)(x+5); 1b) (y+5)(y+2); 1c) (x+4)(x-1); 1d) (x-7)(x+3); 1e) (x-10)(x-3); 1f) prime; 1g) (m+16)(m+1); 1h) (x+7)(x-2); 1i) (a+8b)(a+5b); 2a) 2(x-7)(x-2); 2b) 3(x+3)(x-1); 2c) (x+6)(x+4); 2d) 2(x+11)(x-1); 2e) 5(x+3)(x+1); 2f) -x(x-5)(x+2); 2g) $4x^2(x-7)(x-2)$; 2h) xy(x+6y)(x+4y);

2i) $\frac{1}{3}(y-11)(y+3)$

Factoring Trinomials of the Form $ax^2 + bx + c$ and Perfect Square Trinomials

Learning Objectives

- 1. Factor trinomials of the form $ax^2 + bx + c$, where $a \neq 1$.
- 2. Factor out the GCF before factoring a trinomial of the form $ax^2 + bx + c$.
- 3. Factor perfect square trinomials.

Examples;

1. Complete each factored form.

a)
$$3x^2 + 8x + 4 = (3x + 2)($$
 b) $2y^2 + 7y - 15 = (2y - 3)($)

Factor each trinomial completely.

- c) $2x^2 + 7x + 3$ d) $5x^2 + 17x + 6$ e) $8x^2 + x 7$
- f) $20r^2 + 31r 7$ g) $6x^2 + 19x 11$ h) $3x^2 7x 20$
- 2. Factor each trinomial completely. If necessary, factor out the GCF first.
 - a) $14x^2 + 4x 10$ b) $9x^2 6x 15$ c) $14x^3 + 66x^2 20x$
 - d) $25x^3 15x^2 10x$ e) $4x^2y^2 xy^2 105y^2$ f) $12x^2 25xt + 12t^2$
 - g) $-7x^2 33x + 10$ h) $18x^4 3x^3 21x^2$ i) $2x^5 x^3y^2 15xy^4$
- 3. Factor each Perfect Square Trinomial completely.

a) $x^2 + 2x + 1$ b) $4x^2 - 12x + 9$ c) $25x^2 + 60xy + 36y^2$

d) $16x^3 - 8x^2y + xy^2$ e) $5x^3 - 10x^2 + 5x$ f) $2a - 24ay + 72ay^2$

Teaching Notes:

- Some students remember factoring from high school and are able to use the trial-and-error method to factor.
- Some students may need to see Section 4.4, *Factoring Trinomials by Grouping* before being able to factor successfully.
- Encourage students to use strategies when factoring. For example, identify any prime numbers to reduce the number of combinations.
- Many students will forget to put the GCF in their final answer.
- Remind students that they can check their work by multiplying.
- Each section in the text has 3 worksheets in the Extra Practice featuring differentiated learning.

 $\begin{array}{l} \underline{Answers} \quad 1a) \ (x+2); \ 1b) \ (y+5); \ 1c) \ (2x+1)(x+3); \ 1d) \ (5x+2)(x+3); \ 1e) \ (8x-7)(x+1); \ 1f) \ (5r-1)(4r+7); \\ 1g) \ (3x+11)(2x-1); \ 1h) \ (3x+5)(x-4); \ 2a) \ 2(7x-5)(x+1); \ 2b) \ 3(3x-5)(x+1); \ 2c) \ 2x(7x-2)(x+5); \\ 2d) \ 5x(5x+2)(x-1); \ 2e) \ y^2(x+5)(4x-21); \ 2f) \ (4x-3t)(3x-4t); \ 2g) \ (-7x+2)(x+5); \ 2h) \ 3x^2(6x-7)(x+1); \\ 2i) \ x(2x^2+5y^2)(x^2-3y^2), \ 3a) \ (x+1)^2, \ 3b) \ (2x-3)^2, \ 3c) \ (5x+6y)^2 \ 3d) \ x(4x-y)^2, \ 3e) \ 5x(x-1)^2, \ 3f) \ 2a(1-6y)^2 \end{array}$

Factoring Trinomials of the Form $ax^2 + bx + c$ by Grouping

Learning Objectives

1. Use the grouping method to factor trinomials of the form $ax^2 + bx + c$.

Examples:

1. Factor the following trinomial by grouping. Complete the outlined steps.

a) $12y^2 + 17y + 6$

Find two numbers whose product is 72 (12•6) and whose sum is 17: _____ Write 17y using the factors from previous step: _____ Factor by grouping: _____

b) $10x^2 + 9x - 9$

Find two numbers whose product is $-90[10 \cdot (-9)]$ and whose sum is (-9): _____ Write (-9x) using the factors from part (a): _____ Factor by grouping: _____

Factor by grouping.

c) $8x^2 + 18x + 9$ d) $6x^2 + 7x - 3$ e) $7x^2 - 19x - 6$ f) $4x^2 - 12x + 9$ g) $6x^2 - 17x + 5$ h) $20x^2 - 15x - 50$ i) $45x^3 + 45x^2 - 50x$ j) $x - 15 + 6x^2$ k) $10z^2 - 12z - 1$

Teaching Notes:

- Most students appreciate seeing the grouping method. This method gives the student a step-bystep guide to factoring.
- Encourage students to use whatever method works for them (trial-and-error or grouping).
- Remind students to put the trinomial into standard form before attempting to factor.
- Encourage students to check their factoring answers by multiplication.
- Each section in the text has 3 worksheets in the Extra Practice featuring differentiated learning.

<u>Answers:</u> 1a) 9,8; 9y+8y; (4y+3)(3y+2); 1b) -6, 15; -6x+15x; (5x-3)(2x+3); 1c) (4x+3)(2x+3); 1d) (2x+3)(3x-1); 1e) (7x+2)(x-3); 1f0 $(2x-3)^2$; 1g) (2x-5)(3x-1); 1h) 5(x-2)(4x+5); 1i) 5x(3x-2)(3x+5); 1j) (3x+5)(2x-3); 1k) prime

Factoring Binomials

Learning Objectives:

- 1. Factor the difference of two squares.
- 2. Factor the sum or difference of two cubes.

Examples:

- 1. Factor each binomial completely.
 - a) $x^2 9$ b) $x^2 25$ c) $y^2 64$
 - d) $4a^2 9$ e) $49x^2 1$ f) $9a^2 + 16b^2$
 - g) $36m^2 100n^2$ h) $\frac{1}{4}x^2 1$ i) $64 \frac{9}{25}a^2$
- 2. Factor each sum or difference of two cubes completely.
 - a) $8x^3 + 1$ b) $a^3 - 1$ c. $64x^3 + 27y^3$ d) $54y^4 - 2y$ e) $125b^5 + b^2$ f) $a^6 - 1$

Teaching Notes:

- Some students will have a better understanding of a difference of two squares if they are first shown 3a) and 3b) with a middle term of 0*x*.
- Encourage students to become proficient with special case factoring as it will be important for future algebra topics such as completing the square.
- Each section in the text has 3 worksheets in the Extra Practice featuring differentiated learning.

<u>Answers</u>: 1a) (x+3)(x-3); 1b) (x+5)(x-5); 1c) (y+8)(y-8); 1d) (2a+3)(2a-3); 1e) (7x+1)(7x-1); 1f) cannot be factored; 1g) (6m+10n)(6m-10n); 1h) (1/2x+1)(1/2x-1); 1i) (8+3/5a)(8-3/5a); 2a) $(2x+1)(4x^2-2x+1)$; 2b) $(a-1)(a^2+a+1)$; 2c) $(4x+3y)(16x^2-12xy+9y^2)$; 2d) $2y(3y-1)(9y^2+3y+1)$; 2e) $b^2(5b+1)(25b^2-5b+1)$; 2f) $(a^2-1)(a^4+a^2+1)$

Solving Quadratic Equations by Factoring

Learning Objectives:

- 1. Solve quadratic equations by factoring.
- 2. Solve equations with degree greater than 2 by factoring.
- 3. Find the *x*-intercepts of the graph of a quadratic equation in two variables.

Examples:

1. Solve each equation.

a) $(x-1)(x+4) = 0$	b) $(x+5)(x+9) = 0$	c) $(x-10)(x+8) = 0$
d) $5x(x-15) = 0$	e) $(2x-5)(x+3) = 0$	f) $\left(x-\frac{2}{7}\right)\left(x-\frac{1}{3}\right)=0$
g) $x^2 - x - 30 = 0$	h) $x^2 - 9x + 20 = 0$	i) $y^2 - y - 42 = 0$
$j) x^2 - 7x = 0$	k) $x^2 = 25$	1) $x^2 + 2x = 15$
m) $5x^2 - 30x + 40 = 0$	n) $x(x-4) = 21$	o) $x(x-6) = 16$

- 2. Solve the following equations with degree greater than 2 by factoring.
 - a) $y^{3} + 14y^{2} + 49y = 0$ b) $24x^{3} - 4x^{2} - 20x = 0$ c) $(x-4)(x^{2} - 3x + 2) = 0$ d) $16a^{3} - 9a = 0$ e) $49t^{3} - 4t = 0$ f) $(9x+5)(10x^{2} - 3x - 4) = 0$
- 3. Find the *x*-intercepts of the graph.

a) y = (x-4)(x+5)b) y = (x-1)(x+1)c) $y = x^3 - x^2 - 4x - 4$

Teaching Notes:

- Remind students to always put the equation into standard form.
- Some students try to use the zero factor property before the equation is in standard form. For example 1n) $x(x-4) = 21 \rightarrow x = 21, x-4 = 21, etc.$
- Students will find this section challenging.
- Remind students to always check their answers.
- Each section in the text has 3 worksheets in the Extra Practice featuring differentiated learning.

<u>Answers:</u> 1a) 1, -4; 1b) -5, -9; 1c) 10, -8; 1d) 0, 15; 1e) 5/2, -3; 1f) 2/7, 1/3; 1g) 6, -5; 1h) 4, 5; 1i) 7, -6; 1j) 0, 7; 1k) 5, -5; 1l) -5, 3; 1m) 2, 4; 1n) 7, -3; 1o) -2, 8; 2a) 0, -7; 2b) 0, -5/6, 1; 2c) 4, 2, 1; 2d) 0, $\frac{3}{4}$, $-\frac{3}{4}$; 2e) 0, $\frac{2}{7}$, $\frac{2}{7}$; 2f) -5/9, -1/2, 4/5, 3a) (4,0), (-5,0), 3b) (1,0), (-1,0), 3c) (2,0), (-2,0), (1,0)