Introduction to Radicals

Learning Objectives:

1. Find square roots.

2. Find cube roots.

3. Find *n*th roots.

4. Approximate square roots.

5. Simplify radicals containing variables.

Examples:

1. Find each square root.

a)
$$\sqrt{49}$$

b)
$$\sqrt{\frac{1}{36}}$$

c)
$$-\sqrt{9}$$

d)
$$\sqrt{-100}$$

e)
$$\sqrt{\frac{25}{121}}$$

f)
$$\sqrt{0.64}$$

2. Find each cube root.

a)
$$\sqrt[3]{8}$$

c)
$$\sqrt[3]{-\frac{8}{27}}$$

3. Find each root.

a)
$$\sqrt[4]{16}$$

b)
$$\sqrt[3]{-27}$$

c)
$$-\sqrt[4]{\frac{81}{625}}$$

4. Approximate each square root to three decimal places.

a)
$$\sqrt{12}$$

b)
$$\sqrt{22}$$

c)
$$-\sqrt{120}$$

5. Find each root. Assume that all variables represent positive numbers.

a)
$$\sqrt{x^2}$$

b)
$$\sqrt{a^4}$$

c)
$$\sqrt{m^8}$$

d)
$$\sqrt{81x^4}$$

e)
$$\sqrt{x^{10}y^8z^2}$$

f)
$$\sqrt[3]{27a^6b^9c^3}$$

Teaching Notes:

• Many students confuse 1c), 1d), and 2b).

• Students have a hard time understanding $\sqrt{x^2} = |x|$ even though we assume that all variable represent positive numbers.

• It is very important to stress that using a calculator gives an *approximation* and leaving an answer in radical form is an *exact* value.

<u>Answers:</u> 1a) 7; 1b) 1/6; 1c) -3; 1d) not a real number; 1e) 5/11; 1f) 0.8; 2a) 2; 2b) -6; 2c) -2/3; 3a) 2; 3b) -3; 3c) -3/5; 4a) 3.464; 4b) 4.69; 4c) -10.954; 5a) x; 5b) a^2 ; 5c) m^4 ; 5d) $9x^2$; 5e) x^5y^4z ; 5f) $3a^2b^3c$

Simplifying Radicals

Learning Objectives:

- 1. Use the product rule to simplify square roots.
- 2. Use the quotient rule to simplify square roots.
- 3. Simplify radicals containing variables.
- 4. Simplify higher roots.
- 5. Key Vocabulary: perfect squares.

Examples:

1. Use the product rule to simplify each radical.

a)
$$\sqrt{18}$$

b)
$$\sqrt{12}$$

c)
$$\sqrt{33}$$

d)
$$\sqrt{160}$$

e)
$$5\sqrt{16}$$

f)
$$-3\sqrt{50}$$

2. Use the quotient rule and the product rule to simplify each radical.

a)
$$\sqrt{\frac{25}{16}}$$

b)
$$\sqrt{\frac{99}{4}}$$

c)
$$\sqrt{\frac{125}{144}}$$

3. Simplify each radical. Assume that all variables represent positive numbers.

a)
$$\sqrt{x^5}$$

b)
$$\sqrt{y^9}$$

c)
$$\sqrt{a^{13}}$$

d)
$$\sqrt{\frac{18}{x^2}}$$

e)
$$\sqrt{36y^3}$$

f)
$$\sqrt{80y^{12}}$$

g)
$$\sqrt{\frac{98}{p^6}}$$

h)
$$\sqrt{\frac{300}{x^{20}}}$$

i)
$$\sqrt{\frac{16x}{z^{10}}}$$

4. Simplify each radical.

a)
$$\sqrt[3]{40}$$

b)
$$\sqrt[3]{300}$$

c)
$$\sqrt[3]{\frac{625}{216}}$$

Teaching Notes:

- Many students have trouble with radicals.
- When simplifying, students get confused where to write the numbers outside the radical symbol or in the radicand.
- A common error is to evaluate " $\sqrt{16} = \sqrt{4} = 2$ ". Many students do not know when to stop!
- Each section in the text has 3 worksheets in the Extra Practice featuring differentiated learning.

<u>Answers:</u> 1a) $3\sqrt{2}$; 1b) $2\sqrt{3}$; 1c) $\sqrt{33}$; 1d) $4\sqrt{10}$; 1e) 20; 1f) $-15\sqrt{2}$; 2a) 5/4; 2b) $\frac{3\sqrt{11}}{2}$;

$$2c) \; \frac{5\sqrt{5}}{12} \; ; \; 3a) \; \; x^2 \sqrt{x} \; ; \; 3b) \; \; y^4 \sqrt{y} \; ; \; 3c) \; \; a^6 \sqrt{a} \; ; \; 3d) \; \; \frac{3\sqrt{2}}{x} \; ; \; 3e) \; \; 6y \sqrt{y} \; ; \; 3f) \; \; 4y^6 \sqrt{5} \; ; \; \; 3g) \frac{7\sqrt{2}}{p^3} \; ;$$

$$3h)\frac{10\sqrt{3}}{x^{10}}$$
; $3i)$ $\frac{4\sqrt{x}}{z^5}$; $4a)$ $2\sqrt[3]{5}$; $4b)$ $\sqrt[3]{300}$; $4c)$ $\frac{5\sqrt[3]{5}}{6}$

Adding and Subtracting Radicals

Learning Objectives:

- 1. Add or subtract like radicals.
- 2. Simplify radical expressions, and then add or subtract any like radicals.

Examples:

1. Add or subtract as indicated.

a)
$$20\sqrt{5} + 3\sqrt{5}$$

b)
$$11\sqrt{7} - 3\sqrt{7}$$

a)
$$20\sqrt{5} + 3\sqrt{5}$$
 b) $11\sqrt{7} - 3\sqrt{7}$ c) $-7\sqrt{11} - 5\sqrt{11}$

d)
$$11\sqrt{3} - 12\sqrt{3} + 35 + 3\sqrt{3}$$

d)
$$11\sqrt{3} - 12\sqrt{3} + 35 + 3\sqrt{3}$$
 e) $3\sqrt{7} + 5\sqrt{21} - 8\sqrt{21} - 10\sqrt{7}$

2. Add or subtract by first simplifying each radical and then combining any like radicals. Assume that all variables represent positive numbers.

a)
$$8\sqrt{5} + 9\sqrt{20}$$

b)
$$-7\sqrt{2} + 9\sqrt{50}$$

a)
$$8\sqrt{5} + 9\sqrt{20}$$
 b) $-7\sqrt{2} + 9\sqrt{50}$ c) $-8\sqrt{3} - 3\sqrt{75}$

d)
$$-10\sqrt{48} - 3\sqrt{75}$$

e)
$$-5\sqrt{8x} - 6\sqrt{18x}$$

d)
$$-10\sqrt{48} - 3\sqrt{75}$$
 e) $-5\sqrt{8x} - 6\sqrt{18x}$ f) $-5\sqrt{x^2} + 3x + 8\sqrt{x^2}$

3. Simplify each radical expression.

a)
$$5\sqrt[3]{7} + 8\sqrt[3]{7}$$

b)
$$-3\sqrt[3]{12} + 8\sqrt[3]{12} - 10$$

a)
$$5\sqrt[3]{7} + 8\sqrt[3]{7}$$
 b) $-3\sqrt[3]{12} + 8\sqrt[3]{12} - 10$ c) $2\sqrt[3]{25} - 7\sqrt[3]{5} + 6\sqrt[3]{25}$

d)
$$\sqrt[3]{40} + 6\sqrt[3]{135}$$

e)
$$\sqrt[3]{128} - 5\sqrt[3]{250}$$
 f) $7\sqrt[3]{x} + \sqrt[3]{64x}$

f)
$$7\sqrt[3]{x} + \sqrt[3]{64x}$$

Teaching Notes:

- Many students need extra practice in identifying like radicals.
- Some students combine the coefficients and multiply the like radicals.
- Many students confuse $\sqrt{and} \sqrt[3]{}$. In fact, a common error is to evaluate $\sqrt[3]{4} = 2 \text{ or } \sqrt[3]{36} = 6$. Encourage students to be cautious determining the index.
- Each section in the text has 3 worksheets in the Extra Practice featuring differentiated learning.

Answers: 1a)
$$23\sqrt{5}$$
; 1b) $8\sqrt{7}$; 1c) $-12\sqrt{11}$; 1d) $2\sqrt{3} + 35$; 1e) $-3\sqrt{21} - 7\sqrt{7}$; 2a) $26\sqrt{5}$; 2b) $38\sqrt{2}$; 2c) $-23\sqrt{3}$; 2d) $-55\sqrt{3}$; 2e) $-28\sqrt{2x}$; 2f) $6x$; 3a) $13\sqrt[3]{7}$; 3b) $5\sqrt[3]{12} - 10$; 3c) $8\sqrt[3]{25} - 7\sqrt[3]{5}$; 3d) $20\sqrt[3]{5}$; 3e) $-21\sqrt[3]{2}$; 3f) $11\sqrt[3]{x}$

Learning Objectives:

1. Multiply radicals.

2. Divide radicals.

3. Rationalize denominators.

4. Rationalize using conjugates.

5. Key Vocabulary: product rule for radicals, quotient rule for radicals, rationalizing, conjugates.

Examples:

1. Multiply and simplify. Assume that all variables represent positive real numbers.

a)
$$\sqrt{3} \cdot \sqrt{5}$$

b)
$$\sqrt{5x} \cdot \sqrt{5x}$$

c)
$$\sqrt{2} \cdot \sqrt{6}$$

d)
$$\left(3\sqrt{x}\right)^2$$

e)
$$\sqrt{5x^3} \cdot \sqrt{15x}$$

e)
$$\sqrt{5x^3} \cdot \sqrt{15x}$$
 f) $\sqrt{6} \left(\sqrt{3} + \sqrt{2} \right)$

g)
$$\left(\sqrt{7}+3\right)\left(\sqrt{7}-3\right)$$

g)
$$(\sqrt{7}+3)(\sqrt{7}-3)$$
 h) $(8\sqrt{5}+9)(9\sqrt{5}+3)$ i) $(4\sqrt{3}-8)^2$

i)
$$(4\sqrt{3} - 8)^2$$

Divide and simplify. Assume that all variables represent positive real numbers.

a)
$$\frac{\sqrt{12}}{\sqrt{3}}$$

$$b) \quad \frac{\sqrt{50}}{\sqrt{2}}$$

$$c) \quad \frac{\sqrt{50y^3}}{\sqrt{2y}}$$

3. Rationalize each denominator and simplify. Assume that all variables represent positive real numbers.

a)
$$\frac{\sqrt{7}}{\sqrt{5}}$$

b)
$$\sqrt{\frac{5}{12}}$$

c)
$$\frac{3x}{\sqrt{2}}$$

4. Rationalize each denominator and simplify. Assume that all variables represent positive real numbers.

a)
$$\frac{2}{6-\sqrt{3}}$$

b)
$$\frac{7}{\sqrt{5}+2}$$

c)
$$\frac{15}{3+\sqrt{x}}$$

Teaching Notes:

Many students have trouble with problem 1i. They tend to square each term in the binomial rather than squaring the binomial.

Most students are able to rationalize a denominator with one term.

Many students have difficulty rationalizing a denominator with 2 terms.

Each section in the text has 3 worksheets in the Extra Practice featuring differentiated learning.

Answers: 1a) $\sqrt{15}$; 1b) 5x; 1c) $2\sqrt{3}$; 1d) 9x; 1e) $5x^2\sqrt{3}$; 1f) $3\sqrt{2} + 2\sqrt{3}$; 1g) -2;

Th)
$$387 + 105\sqrt{5}$$
; Ii) $112 - 64\sqrt{3}$; 2a) 2; 2b) 5; 2c) 5y; 3a) $\frac{\sqrt{35}}{5}$; 3b) $\frac{\sqrt{15}}{6}$; 3c) $\frac{3x\sqrt{2}}{2}$;

4a)
$$\frac{12+2\sqrt{3}}{33}$$
; 4b) $7\sqrt{5}-14$; 4c) $\frac{45-15\sqrt{x}}{9-x}$

Solving Equations Containing Radicals

Learning Objectives:

- 1. Solve radical equations by using the squaring property of equality once.
- 2. Solve radical equations by using the squaring property of equality twice.

Examples:

1. Solve each equation.

a)
$$\sqrt{x} = 5$$

b)
$$\sqrt{x} - 3 = 13$$

a)
$$\sqrt{x} = 5$$
 b) $\sqrt{x} - 3 = 13$ c) $3\sqrt{x} - 15 = 60$

d)
$$2\sqrt{x} + 11 = 9$$

d)
$$2\sqrt{x} + 11 = 9$$
 e) $1 + \sqrt{y+4} = 11$ f) $\sqrt{y+9} = y+3$

$$f) \quad \sqrt{y+9} = y+3$$

g)
$$\sqrt{5x-2} = \sqrt{2x+1}$$
 h) $\sqrt{x+8} - x = 2$

h)
$$\sqrt{x+8} - x = 2$$

i)
$$\sqrt{9x^2 + 5x - 20} = 3x$$

2. Solve each equation.

a)
$$\sqrt{x} + 3 = \sqrt{x + 21}$$

a)
$$\sqrt{x} + 3 = \sqrt{x + 21}$$
 b) $\sqrt{x - 27} = \sqrt{x} - 3$ c) $\sqrt{x} - 1 = \sqrt{x - 9}$

c)
$$\sqrt{x}-1=\sqrt{x-9}$$

Mixed Practice. Solve each equation.

d)
$$\sqrt{5x-1} = 3$$

e)
$$x + 3 = \sqrt{2x} + 7$$

e)
$$x+3=\sqrt{2x}+7$$
 f) $\sqrt{x+11}=\sqrt{6x-9}$

Teaching Notes:

- Many students have to be reminded to isolate the radical before squaring both sides.
- Refer students to the textbook for *To Solve a Radical Equation Containing Square Roots*.
- Many students find the concept of extraneous solutions confusing.
- Show students a simple example of an extraneous solution, such as: $x = 5 \rightarrow \text{square both sides } \rightarrow x^2 = 25 \rightarrow x = \pm 5 \rightarrow x = -5 \text{ is extraneous.}$
- Each section in the text has 3 worksheets in the Extra Practice featuring differentiated learning.

Answers: 1a) 25; 1b) 256; 1c) 625; 1d) not real; 1e) 96; 1f) 0; 1g) 1; 1h) 1; 1i) 4; 2a) 4; 2b) 36; 2c) 25; 2d) 2; 2e) 8; 2f) 4