Properties of Exponents

Suppose *a* and *b* are any real numbers, and suppose *m* and *n* are any integers. Recall the set of integers is the set $\{..., -3, -2, -1, 0, 1, 2, 3, ...\}$

Product rule:	$a^m a^n = a^{m+n}$
Power of a power rule:	$(a^m)^n = a^{mn}$
Power of a product rule:	$(ab)^m = a^m b^m$
Negative exponent rule:	$a^{-m} = \frac{1}{a^m}$
Quotient rule:	$\frac{a^m}{a^n} = a^{m-n}$
Power of a quotient rule:	$\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}$
Identity property for exponents:	$a^1 = a$
Zero exponent rule:	$a^0 = 1$

Rule for Negative exponents and fractions

If a and b are nonzero real numbers and m and n are integers, then

$$\left(\frac{a}{b}\right)^{-m} = \left(\frac{b}{a}\right)^{m}$$
 and $\frac{a^{-m}}{b^{-n}} = \frac{b^{n}}{a^{m}}$

Definition 1. A number is in <u>scientific notation</u> if it is written as the product of a number between 1 and 10 and an integer power of 10. A number in scientific notation has the form

 $n \times 10^r$

where $1 \le n < 10$ and r = an integer.

Example: Write 475,000 in scientific notation.

We need to ask ourselves how many decimal places would we need to move the decimal on 475,000 to write it as a number between 1 (or equal to 1) and 10 (but not equal to 10)? That number of places is the exponent on ten (when we write 475,000 in scientific notation), so $475,000 = 4.75 \times 10^5$. A number that is less than 1 will have a negative exponent when written in scientific notation.