Properties of Exponents

Suppose a and b are any real numbers, and suppose m and n are any integers. Recall the set of integers is the set $\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$

Product rule: $\quad a^{m} a^{n}=a^{m+n}$
Power of a power rule: $\quad\left(a^{m}\right)^{n}=a^{m n}$
Power of a product rule: $\quad(a b)^{m}=a^{m} b^{m}$
Negative exponent rule: $\quad a^{-m}=\frac{1}{a^{m}}$

Quotient rule:

$$
\frac{a^{m}}{a^{n}}=a^{m-n}
$$

Power of a quotient rule: $\quad\left(\frac{a}{b}\right)^{m}=\frac{a^{m}}{b^{m}}$
Identity property for exponents: $a^{1}=a$
Zero exponent rule: $\quad a^{0}=1$
Rule for Negative exponents and fractions
If a and b are nonzero real numbers and m and n are integers, then

$$
\left(\frac{a}{b}\right)^{-m}=\left(\frac{b}{a}\right)^{m} \quad \text { and } \quad \frac{a^{-m}}{b^{-n}}=\frac{b^{n}}{a^{m}}
$$

Definition 1. A number is in scientific notation if it is written as the product of a number between 1 and 10 and an integer power of 10. A number in scientific notation has the form

$$
n \times 10^{r}
$$

where $1 \leq n<10$ and $r=$ an integer.
Example: Write 475,000 in scientific notation.
We need to ask ourselves how many decimal places would we need to move the decimal on 475,000 to write it as a number between 1 (or equal to 1) and 10 (but not equal to 10)? That number of places is the exponent on ten (when we write 475,000 in scientific notation), so $475,000=4.75 \times 10^{5}$. A number that is less than 1 will have a negative exponent when written in scientific notation.

