Chapter 5 Polynomials

Professor Tim Busken

Department of Mathematics
Grossmont College
October 7, 2012

Multiplying Polynomials

Multiplying Binomials using the Distributive Property

We can multiply two binomials using the Distributive Property,

$$
a \cdot(b+c)=a \cdot b+a \cdot c .
$$

Suppose we want to multiply $(2 x-3)$ times $(x+4)$. Then we treat $(2 x-3)$ like it is playing the role of " a " in the distributive property:
$(2 x-3) \cdot(x+4)=(2 x-3) \cdot x+(2 x-3) \cdot 4$

Multiplying Binomials using the Distributive Property

We can multiply two binomials using the Distributive Property,

$$
a \cdot(b+c)=a \cdot b+a \cdot c .
$$

Suppose we want to multiply $(2 x-3)$ times $(x+4)$. Then we treat $(2 x-3)$ like it is playing the role of " a " in the distributive property:
$(2 x-3) \cdot(x+4)=(2 x-3) \cdot x+(2 x-3) \cdot 4$

Multiplying Binomials using the Distributive Property

We can multiply two binomials using the Distributive Property,

$$
a \cdot(b+c)=a \cdot b+a \cdot c .
$$

Suppose we want to multiply $(2 x-3)$ times $(x+4)$. Then we treat $(2 x-3)$ like it is playing the role of " a " in the distributive property:
$(2 x-3) \cdot(x+4)=(2 x-3) \cdot x+(2 x-3) \cdot 4$

Multiplying Binomials using the Distributive Property

We can multiply two binomials using the Distributive Property,

$$
a \cdot(b+c)=a \cdot b+a \cdot c .
$$

Suppose we want to multiply $(2 x-3)$ times $(x+4)$. Then we treat $(2 x-3)$ like it is playing the role of " a " in the distributive property:
$(2 x-3) \cdot(x+4)=(2 x-3) \cdot x+(2 x-3) \cdot 4$

Multiplying Binomials using the Distributive Property

We can multiply two binomials using the Distributive Property,

$$
a \cdot(b+c)=a \cdot b+a \cdot c .
$$

Suppose we want to multiply $(2 x-3)$ times $(x+4)$. Then we treat $(2 x-3)$ like it is playing the role of " a " in the distributive property:
$(2 x-3) \cdot(x+4)=(2 x-3) \cdot x+(2 x-3) \cdot 4$

Multiplying Binomials using the Distributive Property

We can multiply two binomials using the Distributive Property,

$$
a \cdot(b+c)=a \cdot b+a \cdot c .
$$

Suppose we want to multiply $(2 x-3)$ times $(x+4)$. Then we treat $(2 x-3)$ like it is playing the role of " a " in the distributive property:
$(2 x-3) \cdot(x+4)=(2 x-3) \cdot x+(2 x-3) \cdot 4$

Multiplying Binomials using the Distributive Property

We can multiply two binomials using the Distributive Property,

$$
a \cdot(b+c)=a \cdot b+a \cdot c .
$$

Suppose we want to multiply $(2 x-3)$ times $(x+4)$. Then we treat $(2 x-3)$ like it is playing the role of " a " in the distributive property:
$(2 x-3) \cdot(x+4)=(2 x-3) \cdot x+(2 x-3) \cdot 4$

Multiplying Binomials using the Distributive Property

We can multiply two binomials using the Distributive Property,

$$
a \cdot(b+c)=a \cdot b+a \cdot c .
$$

Suppose we want to multiply $(2 x-3)$ times $(x+4)$. Then we treat $(2 x-3)$ like it is playing the role of "a" in the distributive property:

$$
\begin{aligned}
(2 x-3) \cdot(x+4) & =(2 x-3) \cdot x+(2 x-3) \cdot 4 & & \\
& =x \cdot(2 x-3)+4 \cdot(2 x-3) & & \text { since } a \cdot b=b \cdot a \\
& =x \cdot(2 x)+x \cdot(-3)+4 \cdot(2 x)+4 \cdot(-3) & & \text { Distributive Prop. } \\
& =(2 x) \cdot x+(-3) \cdot x+4 \cdot(2 x)+(-3) \cdot 4 & & \text { Commutative. Prop. } \\
& =2 x \cdot x+(-3) \cdot x+4 \cdot 2 x+(-3) \cdot 4 & & \text { Associative Prop. } \\
& =2 x^{2}+(-3 x)+8 x+(-12) & & \text { Closure Prop. } \\
& =2 x^{2}+5 x-12 & & \text { Combine Like Terms }
\end{aligned}
$$

Multiplying Binomials using the FOIL Technique

The product of two binomials results in four terms before the like terms are combined. The acronym "Foil" stands for FIRST, OUTSIDE, INSIDE, LAST, and should remind you how to compute the product of two binomials. Consider the following product:

$$
(2 x-3) \cdot(x+4)=\underbrace{2 x^{2}}_{\mathrm{F}}+\underbrace{8 x}_{\mathrm{O}}+\underbrace{(-3 x)}_{\mathrm{I}}+\underbrace{(-12)}_{\mathrm{L}}
$$

Multiplying Binomials using the FOIL Technique

$2 x^{2}$ comes from multiplying the first terms of each binomial.

Multiplying Binomials using the FOIL Technique

$8 x$ comes from multiplying the outside terms of each binomial.

Multiplying Binomials using the FOIL Technique

$-3 x$ comes from multiplying the inside terms of each binomial.

Multiplying Binomials using the FOIL Technique

-12 comes from multiplying the last terms of each binomial.

Example: Multiply $\left(x^{2}-3 x+4\right) \cdot(2 x-3)$

Solution

$$
\begin{aligned}
& \left(x^{2}-3 x+4\right) \cdot(2 x-3)= \\
& =(2 x-3) \cdot\left(x^{2}-3 x+4\right) \\
& =2 x \cdot\left(x^{2}-3 x+4\right)+(-3) \cdot\left(x^{2}-3 x+4\right) \\
& =2 x^{3}-6 x^{2}+8 x-3 x^{2}+9 x-12 \\
& =2 x^{3}+\left(-6 x^{2}-3 x^{2}\right)+(8 x+9 x)-12
\end{aligned}
$$

$$
=2 x^{3}-9 x^{2}+17 x-12
$$

comm prop \times distr. prop \times distr. prop \times comm., assoc. + addn closure prop

p5 Factoring Polynomials

\#1 RULE: FACTOR OUT THE GCF

Factoring reverses multiplication. Consider the polynomial expression $6 x^{2}-3 x$, whose two terms have a greatest common factor, $3 x$.
$6 x^{2}-3 x=(3 x) \cdot(2 x)-(3 x) \cdot(1)$

$$
=3 x \cdot(2 x-1) \quad \text { since } a \cdot b-a \cdot c=a \cdot(b-c)
$$

We can rewrite $6 x^{2}-3 x$ as a difference of two products.
Afterwards, we can rewrite an equivalent expression using the distributive property. We call this process factoring out the gcf.

Definition (The \#1 Rule of Factoring)

The first step to factoring any algebraic expression is to factor out the gcf (if there is one).

Definition

The greatest common factor (GCF) for a polynomial is the largest monomial that divides (is a factor of) each term of the polynomial.

Example: The greatest common factor for $25 x^{5}+20 x^{4}-30 x^{3}$ is $5 x^{3}$ since it is the largest monomial that is a factor of each term.

$$
\begin{aligned}
25 x^{5}+20 x^{4}-30 x^{3} & =5 x^{3} \cdot\left(5 x^{2}\right)+5 x^{3} \cdot(4 x)-5 x^{3} \cdot(6) \\
& =5 x^{3} \cdot\left(5 x^{2}+4 x-6\right)
\end{aligned}
$$

How to find the GCF of a polynomial

© Find the GCF of the coefficients of each variable factor.

How to find the GCF of a polynomial

(1) Find the GCF of the coefficients of each variable factor.
(2) For each variable factor common to all the terms, determine the smallest exponent that the variable factor is raised to.

How to find the GCF of a polynomial

(1) Find the GCF of the coefficients of each variable factor.
(2) For each variable factor common to all the terms, determine the smallest exponent that the variable factor is raised to.
(0. Compute the product of the common factors found in Steps 1 and 2. This expression is the GCF of the polynomial.

How to find the GCF of a polynomial

(1) Find the GCF of the coefficients of each variable factor.
(2) For each variable factor common to all the terms, determine the smallest exponent that the variable factor is raised to.
(3) Compute the product of the common factors found in Steps 1 and 2. This expression is the GCF of the polynomial.

Factor the greatest common factor from each of the following.

- $8 x^{3}-8 x^{2}-48 x$
- $15 a^{7}-25 a^{5}+30 a^{3}$
- $12 x^{4} y^{5}-9 x^{3} y^{4}-15 x^{5} y^{3}$
- $4(a+b)^{4}+6(a+b)^{3}+16(a+b)^{2}$
- $x(x+7)+2(x+7)$

Earlier in the chapter, we multiplied binomials.

$$
\begin{gathered}
(x+2) \cdot(x+8)=x^{2}+10 x+16 \\
(x+6)(x+3)=x^{2}+9 x+18
\end{gathered}
$$

In each case, the product of the two binomials is a trinomial.

Earlier in the chapter, we multiplied binomials.

$$
\begin{gathered}
(x+2) \cdot(x+8)=x^{2}+10 x+16 \\
(x+6)(x+3)=x^{2}+9 x+18
\end{gathered}
$$

In each case, the product of the two binomials is a trinomial. The first term in the resulting trinomial is obtained by multiplying the first term in each binomial.

Earlier in the chapter, we multiplied binomials.

$$
\begin{gathered}
(x+2) \cdot(x+8)=x^{2}+10 x+16 \\
(x+6)(x+3)=x^{2}+9 x+18
\end{gathered}
$$

In each case, the product of the two binomials is a trinomial. The first term in the resulting trinomial is obtained by multiplying the first term in each binomial. The middle term arises from adding the product of the two inside terms with the product of the two outside terms.

Earlier in the chapter, we multiplied binomials.

$$
\begin{aligned}
(x+2) \cdot(x+8) & =x^{2}+10 x+16 \\
(x+6)(x+3) & =x^{2}+9 x+18
\end{aligned}
$$

In each case, the product of the two binomials is a trinomial. The first term in the resulting trinomial is obtained by multiplying the first term in each binomial. The middle term arises from adding the product of the two inside terms with the product of the two outside terms. The last term is the product of the two outside terms. The last term is the product of the last terms in each binomial.

In general,

$$
(x+a) \cdot(x+b)=x^{2}+a x+b x+a \cdot b
$$

In general,

$$
\begin{aligned}
(x+a) \cdot(x+b) & =x^{2}+a x+b x+a \cdot b \\
& =x^{2}+(a+b) x+a \cdot b
\end{aligned}
$$

In general,

$$
\begin{aligned}
(x+a) \cdot(x+b) & =x^{2}+a x+b x+a \cdot b \\
& =x^{2}+(a+b) x+a \cdot b
\end{aligned}
$$

We can view this generalization as a factoring problem

$$
x^{2}+(a+b) x+a \cdot b=(x+a) \cdot(x+b)
$$

In general,

$$
\begin{aligned}
(x+a) \cdot(x+b) & =x^{2}+a x+b x+a \cdot b \\
& =x^{2}+(a+b) x+a \cdot b
\end{aligned}
$$

We can view this generalization as a factoring problem

$$
x^{2}+(a+b) x+a \cdot b=(x+a) \cdot(x+b)
$$

To factor a trinomial with a leading coefficient of 1 , we simply find the two numbers a and b whose sum is the coefficient of the middle term, and whose product is the constant term.

Factor.

- $x^{2}+5 x+4$
- $x^{2}+7 x+6$
- $x^{2}+9 x+14$
- $x^{2}+11 x+24$
- $x^{2}+19 x+34$
- $x^{2}+12 x+27$
- $x^{2}+20 x+64$
- $x^{2}+18 x+65$
- $x^{2}-x+5$
- $x^{2}+5 x y+4 y^{2}$
- $x^{2}+5 x y+6 y^{2}$
- $x^{2}+12 x y+27 y^{2}$
- $m^{2}+19 m n+60 n^{2}$
- $x^{2}+2 x-15$
- $x^{2}-7 x-18$
- $x^{2}+x-20$

Polynomials with four terms can sometimes be factored by grouping.

Example Factor $x^{4}-2 x^{3}-8 x+16$
Solution:

$$
x^{4}-2 x^{3}-8 x+16=\left(x^{4}-2 x^{3}\right)+(-8 x+16) \quad \text { (assoc. prop }+ \text {) }
$$

$$
\begin{aligned}
& =\left[x \cdot\left(x^{3}\right)+(-2) \cdot\left(x^{3}\right)\right]+[(-8) \cdot x+(-8) \cdot(-2)] \\
& =x^{3}(x-2)-8(x-2) \quad \text { (distr. prop.) } \\
& =x^{3}(x-2)-8(x-2) \quad \text { (identify common factor) } \\
& =(x-2)\left(x^{3}-8\right) \quad \text { (distr. prop) }
\end{aligned}
$$

Factor each using the grouping technique.

- $5 x+5 y+x^{2}+x y$
- $a b^{3}+b^{3}+6 a+6$
- $15-5 y^{4}+3 x^{3}+x^{3} y^{4}$
- $x^{3}+5 x^{2}+3 x+15$

ac-grouping method for quadratics

Problem: Factor $a x^{2}+b x+c \quad$ Problem: Factor $10 x^{2}-11 x-6$
(1) Multiply a times c.
(1) $a=10, b=-11, c=-6$, so clearly $a \cdot c=-60$
(2) List all possible pairs of numbers whose product is ac

-60	-60
$\swarrow \searrow$	$\swarrow \searrow$
$-6 \cdot 10$	$-1 \cdot 60$
$6 \cdot(-10)$	$1 \cdot(-60)$
$3 \cdot(-20)$	$-5 \cdot 12$
$-3 \cdot 20$	$5 \cdot(-12)$
$-15 \cdot 4$	$15 \cdot(-4)$
$(3) \quad b=-11$, and $-15+4=-11$	

ac-grouping method for quadratics

Problem: Factor $a x^{2}+b x+c$

Problem: Factor $10 x^{2}-11 x-6$

(4) Replace b with the sum of the circled pair. Distribute x into this quantity
(4) $10 x^{2}-11 x-6$
$=10 x^{2}+(-15 x+4 x)-6$
$=10 x^{2}-15 x+4 x-6$
(5) Now factor by grouping:
Use parenthesis to group the
first two terms, and another ()
to group the second two terms.
(5) Now factor by grouping:
Use parenthesis to group the
first two terms, and another ()
to group the second two terms.
(5) Now factor by grouping:
Use parenthesis to group the
first two terms, and another ()
to group the second two terms.
(5) $\left(10 x^{2}-15 x\right)+(4 x-6)$
$=5 x(2 x-3)+2(2 x-3)$
$=5 x(2 x-3)+2(2 x-3)$
$=(2 x-3) \cdot(5 x+2)$

