Section 2.4 Linear Inequalities in One Variable

Professor Tim Busken

Department of Mathematics
June 16, 2014

2.4 Linear Inequalities in One Variable

Learning Objectives:

- Solve a linear inequality in one variable and graph the solution set.
- Write solutions to inequalities using interval notation.
- Solve a compound inequality and graph the solution set.
- Solve application problems using inequalities.

2.4 Linear Inequalities in One Variable

- An equation states that two algebraic expressions are equal, while an inequality is a statement that indicates two algebraic expressions are not equal in a particular way.

2.4 Linear Inequalities in One Variable

- An equation states that two algebraic expressions are equal, while an inequality is a statement that indicates two algebraic expressions are not equal in a particular way.
- Inequalities are stated using one the following symbols:
(1) less than $<$,
(2) less than or equal to \leq,
(3) greater than $>$,
(4) or greater than or equal to \geq.

2.4 Linear Inequalities in One Variable

- An equation states that two algebraic expressions are equal, while an inequality is a statement that indicates two algebraic expressions are not equal in a particular way.
- Inequalities are stated using one the following symbols:
(1) less than $<$,
(2) less than or equal to \leq,
(3) greater than $>$,
(4) or greater than or equal to \geq.

2.4 Linear Inequalities in One Variable

Definition
 Replacing the equal sign in the general linear equation $a \cdot x+b=c$ by any of the symbols $<, \leq,>$ or \geq gives a linear inequality in one variable.

For example, $2 \cdot x-1 \leq 0$ and $3 x+5>8$ are two different linear inequalities in a single variable, x.

2.4 Solving Linear Inequalities

Definition
 The solution to any linear inequality is a SET of real numbers.

2.4 Solving Linear Inequalities

Definition
 The solution to any linear inequality is a SET of real numbers.

For example, $\{x \mid x<-2\}$ is shorthand notation for the set of real numbers less than -2.

Addition Property for Inequalities

For any three algebraic expressions A, B and C,

$$
\text { If } \quad A<B
$$

then $A+C<B+C$
In words: Adding the same quantity to both sides of an inequality will not change the solution set.

We can use the Addn. Prop. to write equivalent inequalities.

Example 1 Solve the inequality, $5 x+4<4 x+2$, then graph the solution.

Example 1 Solve the inequality, $5 x+4<4 x+2$, then graph the solution.

Solution: Try to get the variable terms on the left-hand side of the inequality, and the constant terms on the right-hand side.

Example 1 Solve the inequality, $5 x+4<4 x+2$, then graph the solution.

Solution: Try to get the variable terms on the left-hand side of the inequality, and the constant terms on the right-hand side.

$$
\begin{aligned}
& 5 x+4<4 x+2 \\
& 5 x+4+(-4)<4 x+2+(-4) \\
& 5 x+(4+(-4))<4 x+(2+(-4)) \text { Addition Prop. of Inequalities } \\
& 5 x+0<4 x+(-2) \quad \text { Adsociative Prop. of Addition } \\
& 5 x<4 x-2 \text { Additive Identity \& } \\
& \text { the Defn. of Subtraction }
\end{aligned}
$$

Example 1 Solve the inequality, $5 x+4<4 x+2$, then graph the solution.

Solution:

$$
5 x<4 x-2
$$

$5 x+(-4 x)<4 x-2+(-4 x) \quad$ Addition Prop. of Inequalities
$5 x+(-4 x)<4 x+(-4 x)-2 \quad$ Commutative Prop. of Addn.
$(5 x+(-4 x))<(4 x+(-4 x))-2 \quad$ Associative Prop. of Addn.

$$
(5-4) \cdot x<0-2
$$

$$
1 \cdot x<-2
$$

Closure \& Additive Identity Props. $x<-2 \quad$ Multiplicative Identity Prop.

Example 1 Solve the inequality, $5 x+4<4 x+2$, then graph the solution.

Example 1 Solve the inequality, $5 x+4<4 x+2$, then graph the solution.

Conclusion: The solution set of the given inequality is $\{x \mid x<-2\}$. This is called writing the solution using set notation (or set-builder notation).

Example 1 Solve the inequality, $5 x+4<4 x+2$, then graph the solution.

Conclusion: The solution set of the given inequality is $\{x \mid x<-2\}$. This is called writing the solution using set notation (or set-builder notation).

Graph: We can shade the number line to the left of -2 to give a graphical description of the solution set.

Example 1 Solve the inequality, $5 x+4<4 x+2$, then graph the solution.

Conclusion: The solution set of the given inequality is $\{x \mid x<-2\}$. This is called writing the solution using set notation (or set-builder notation).

Graph: We can shade the number line to the left of -2 to give a graphical description of the solution set.

We use a left-opening parenthesis at -2 to indicate that -2 is not part of the solution set.

Example 1 Solve the inequality, $5 x+4<4 x+2$, then graph the solution.

An alternate and more compact way of writing the solution set is

$$
(-\infty,-2)
$$

Example 1 Solve the inequality, $5 x+4<4 x+2$, then graph the solution.

An alternate and more compact way of writing the solution set is

$$
(-\infty,-2)
$$

This gives us 3 equivalent representations of the solution set to the original inequality:

Example 1 Solve the inequality, $5 x+4<4 x+2$, then graph the solution.

An alternate and more compact way of writing the solution set is

$$
(-\infty,-2)
$$

This gives us 3 equivalent representations of the solution set to the original inequality:

Set Notation

$$
\{x \mid x<-2\}
$$

Example 1 Solve the inequality, $5 x+4<4 x+2$, then graph the solution.

An alternate and more compact way of writing the solution set is

$$
(-\infty,-2)
$$

This gives us 3 equivalent representations of the solution set to the original inequality:

Example 1 Solve the inequality, $5 x+4<4 x+2$, then graph the solution.

An alternate and more compact way of writing the solution set is

$$
(-\infty,-2)
$$

This gives us 3 equivalent representations of the solution set to the original inequality:

Interval Notation

$$
(-\infty,-2)
$$

Properties of Inequalities

Multiplication Property of Inequalities

For any three algebraic expressions A, B and C, where $C \neq 0$,

$$
\begin{aligned}
\text { If } & A<B, \\
\text { then } & C \cdot A<C \cdot B
\end{aligned} \quad \text { if } C \text { is positive }(C>0)
$$

Properties of Inequalities

Multiplication Property of Inequalities

For any three algebraic expressions A, B and C, where $C \neq 0$,

$$
\begin{aligned}
\text { If } & A<B, \\
\text { then } & C \cdot A<C \cdot B
\end{aligned} \quad \text { if } C \text { is positive }(C>0)
$$

In words: Multiplying both sides of an inequality by a positive quantity always produces an equivalent inequality. Multiplying both sides of an inequality by a negative number produces an equivalent inequality BUT it reverses the direction of the inequality symbol.

Example 2
 Determine what set is the solution to

$$
-2 x-3 \leq 3
$$

Example 2
 Determine what set is the solution to

$$
-2 x-3 \leq 3
$$

Solution:

$$
\begin{array}{rlr}
-2 x-3 & \leq 3 \\
-2 x-3+3 & <3+3 \\
-2 x & \leq 6 & \text { Addition Prop. of Inequalities } \\
\left(-\frac{1}{2}\right) \cdot(-2 x) & \geq\left(-\frac{1}{2}\right) \cdot 6 & \text { Multiplication Prop. of Inequalities } \\
x & \geq-3 &
\end{array}
$$

Example 2
 Determine what set is the solution to

$$
-2 x-3 \leq 3
$$

Solution:

$$
\begin{array}{rlr}
-2 x-3 & \leq 3 \\
-2 x-3+3 & <3+3 \\
-2 x & \leq 6 & \text { Addition Prop. of Inequalities } \\
\left(-\frac{1}{2}\right) \cdot(-2 x) & \geq\left(-\frac{1}{2}\right) \cdot 6 & \text { Multiplication Prop. of Inequalities } \\
x & \geq-3 &
\end{array}
$$

Set Notation
$\{x \mid x \geq-3\}$

Example 2
 Determine what set is the solution to

$$
-2 x-3 \leq 3
$$

Solution:

$$
\begin{array}{rlr}
-2 x-3 & \leq 3 \\
-2 x-3+3 & <3+3 \\
-2 x & \leq 6 & \text { Addition Prop. of Inequalities } \\
\left(-\frac{1}{2}\right) \cdot(-2 x) & \geq\left(-\frac{1}{2}\right) \cdot 6 & \text { Multiplication Prop. of Inequalities } \\
x & \geq-3 &
\end{array}
$$

Set Notation
Line Graph
$\{x \mid x \geq-3\}$

Example 2
 Determine what set is the solution to

$$
-2 x-3 \leq 3
$$

Solution:

$$
\begin{array}{rlr}
-2 x-3 & \leq 3 \\
-2 x-3+3 & <3+3 \\
-2 x & \leq 6 & \text { Addition Prop. of Inequalities } \\
\left(-\frac{1}{2}\right) \cdot(-2 x) & \geq\left(-\frac{1}{2}\right) \cdot 6 & \text { Multiplication Prop. of Inequalities } \\
x & \geq-3 &
\end{array}
$$

Set Notation
$\{x \mid x \geq-3\}$

Line Graph

Interval Notation $[-3, \infty)$

Interval Notation and Graphing

Inequality
Notation
$x<-2$
Interval
Notation
$(-\infty,-2)$

Graph Using
Parenthesis/Brackets

Graph using open and closed circles

Interval Notation and Graphing

Interval Notation and Graphing

Interval Notation and Graphing

2.4 Linear Inequalities in One Variable

Classroom Example: Solve the following inequality.

- $3(2 x+5) \leq-3 x$

2.4 Linear Inequalities in One Variable

Classroom Examples: Take the next five minutes to work these 6 problems. Graph the solution set to the given inequality, then write the solution set using interval notation.

- $x \leq-6$
- $x>5$
- $x \geq-1$
- $x>10$

Classroom Examples: Solve each inequality. Graph the solution set, then write the solution set using interval notation.

- $2 x-1 \leq-6$
- $-3 x<2 x-6$

2.4 Linear Inequalities in One Variable

Definition

A compound inequality is two or more simple inequalities \{sets\} joined by the terms 'and' or 'or' .

For Example, the set $\{x \mid 3 x-6 \leq-3$ or $3 x-6 \geq 3\}$ is a compound inequality.

The inequality statement $-7<x<7$ is to be read " x is in between

 -7 and 7."The inequality statement $-7<x<7$ is to be read " x is in between -7 and 7 ." The statement $-7<x<7$ is called a composite inequality because it is composed of the intersection of the sets described by $-7<x$ AND $x<7$.

The inequality statement $-7<x<7$ is to be read " x is in between -7 and 7 ." The statement $-7<x<7$ is called a composite inequality because it is composed of the intersection of the sets described by $-7<x$ AND $x<7$. We can use the coordinate line to illustrate each solution set as follows:

The inequality statement $-7<x<7$ is to be read " x is in between -7 and 7." The statement $-7<x<7$ is called a composite inequality because it is composed of the intersection of the sets described by $-7<x$ AND $x<7$. We can use the coordinate line to illustrate each solution set as follows:
x axis

The inequality statement $-7<x<7$ is to be read " x is in between -7 and 7 ." The statement $-7<x<7$ is called a composite inequality because it is composed of the intersection of the sets described by $-7<x$ AND $x<7$. We can use the coordinate line to illustrate each solution set as follows:

x axis $\{x \mid x<7\}$

The inequality statement $-7<x<7$ is to be read " x is in between -7 and 7 ." The statement $-7<x<7$ is called a composite inequality because it is composed of the intersection of the sets described by $-7<x$ AND $x<7$. We can use the coordinate line to illustrate each solution set as follows:

x axis $\{x \mid x<7\}$
x axis

2.4 Linear Inequalities in One Variable

Classroom Examples: Solve the following compound inequalities. Graph the solution set on a number line, then write the solution set using interval notation.

- $\quad-7 \leq 2 x+1 \leq 7$
- $3 x-6 \leq-3$ or $3 x-6 \geq 3$

Interval Notation and Graphing

