Mini-Lecture 10.1

The Parabola and the Circle

Learning Objectives:

1. Graph parabolas of the form $x=a(y-k)^{2}+h$ and $y=a(x-h)^{2}+k$.
2. Graph circles of the form $(x-h)^{2}+(y-k)^{2}=r^{2}$.
3. Find the center and the radius of a circle, given its equation.
4. Write the equation of a circle given its center and radius.

Examples:

1. The graph of each equation is a parabola. Find the vertex of the parabola, and then graph it.
a) $y=x^{2}$
b) $y=x^{2}+2$
c) $y=(x-2)^{2}$
d) $y=-2(x+1)^{2}-1$
e) $x=y^{2}$
f) $x=\frac{1}{2} y^{2}$
g) $x=-3 y^{2}$
h) $x=(y-2)^{2}+1$
i) $x=-2(y+3)^{2}-3$
j) $y=x^{2}-4 x+1$
k) $x=-2 y^{2}+12 y-8$
2. Graph circles of the form $(x-h)^{2}+(y-k)^{2}=r^{2}$ by determining the center and radius.
a) $x^{2}+y^{2}=9$
b) $(x-2)^{2}+y^{2}=16$
c) $(x+3)^{2}+(y-4)^{2}=25$
3. Write an equation of the circle with the given center and radius.
a) $(3,5) ; 2$
b) $(-2,4) ; \sqrt{3}$
c) the origin; $5 \sqrt{2}$
4. Rewrite each equation in standard form, and determine the center and radius of each circle.
a) $x^{2}+y^{2}+6 x-4 y=23$
b) $x^{2}+y^{2}-12 x-2 y-27=0$

Teaching Notes:

- Most students need to be reminded of how to graph vertical parabolas.
- Some students find horizontal parabolas very confusing.
- Encourage students to identify the axis of symmetry when graphing parabolas and to plot a couple of points to the right and to the left of the axis of symmetry.
- Most students understand the circle equation once they see how it results from the distance formula.
- Many students need to be reminded of the procedure for completing the square.
- Refer students to the Parabolas and Circle charts in the text.

Answers: (graphing answers at end of mini-lectures) 1a) $(0,0) ; b)(0,2) ; c)(2,0) ; d)(-1,-1) ;$ e) $(0,0) ; f)(0,0)$;
g) $(0,0) ; h(1,2) ;$ i) $(-3,-3) ; j)(2,-3) ; k)(10,3) ; 2 a)(0,0), r=3 ;$ b) $(2,0), r=4 ; c)(-3,4), r=5$;

3a) $(x-3)^{2}+(y-5)^{2}=4$; b) $(x+2)^{2}+(y-4)^{2}=3$; c) $\left.x^{2}+y^{2}=50 ; 4 a\right)(x+3)^{2}+(y-2)^{2}=36$, center $(-3,2), r=6$;
b) $(x-6)^{2}+(y-1)^{2}=64$, center $(6,1), r=8$

Mini-Lecture 10.2
 The Ellipse and the Hyperbola

Learning Objectives:

1. Define and graph an ellipse.
2. Define and graph a hyperbola.

Examples:

1. Graph each ellipse.
a) $\frac{x^{2}}{9}+\frac{y^{2}}{16}=1$
b) $\frac{x^{2}}{25}+\frac{y^{2}}{4}=1$
c) $\frac{x^{2}}{16}+y^{2}=1$
d) $25 x^{2}+4 y^{2}=100$
e) $\frac{(x+3)^{2}}{36}+\frac{(y-2)^{2}}{16}=1$
f) $\frac{(x+2)^{2}}{25}+\frac{(y+4)^{2}}{9}=1$
2. Graph each hyperbola.
a) $\frac{x^{2}}{4}-\frac{y^{2}}{4}=1$
b) $\frac{y^{2}}{4}-\frac{x^{2}}{4}=1$
c) $\frac{x^{2}}{25}-\frac{y^{2}}{9}=1$
d) $4 y^{2}-x^{2}=16$
e) $25 x^{2}-4 y^{2}=100$
3. Identify each equation as that of an ellipse or a hyperbola, then sketch the graph.
a) $\frac{x^{2}}{25}=1-y^{2}$
b) $4 x^{2}-25 y^{2}=100$
c) $4(x+3)^{2}+9(y-3)^{2}=36$

Teaching Notes:

- Some students understand the graphs better if the domains of $1 a$) and $2 a$) are discussed before they are graphed.
- Encourage students to memorize the standard forms of the equations of an ellipse or hyperbola centered at the origin. Then the equation for an ellipse centered at (h, k) can easily be remembered using graph-shifting ideas.
- Most students need to see many examples of hyperbola graphs in order to master this section.
- Students view the asymptotes as less mysterious if they are shown how a hyperbola equation behaves for very large x (or y) values. For example:

$$
\frac{y^{2}}{b^{2}}-\frac{x^{2}}{a^{2}}=1 \rightarrow y= \pm \frac{b}{a} \sqrt{x^{2}+a^{2}} \rightarrow \text { as } x \text { gets large } \rightarrow y= \pm \frac{b}{a} x
$$

- Refer students to the Ellipse with Center $(0,0)$ and Hyperbola with Center $(0,0)$ charts in this section, and the Conic Sections chart in the Integrated Review at the end of this section.

Answers: (graphing answers at end of mini-lectures) 3 a) $\frac{x^{2}}{25}+y^{2}=1$, ellipse; b) $\frac{x^{2}}{25}-\frac{y^{2}}{4}=1$, hyperbola;
c) $\frac{(x+3)^{2}}{9}+\frac{(y-3)^{2}}{4}=1$, ellipse

Mini-Lecture 10.3

Solving Nonlinear Systems of Equations

Learning Objectives:

1. Solve a nonlinear system by substitution.
2. Solve a nonlinear system by elimination.

Examples:

1. Solve each nonlinear system of equations by substitution.
a) $\begin{aligned} x^{2}+y^{2} & =25 \\ x+y & =7\end{aligned}$
b) $\begin{aligned} & y=x^{2}-4 x+4 \\ & x+y=14\end{aligned}$
c) $\begin{gathered}x+y=-3 \\ y^{2}-x^{2}=3\end{gathered}$
2. Solve each nonlinear system of equations by elimination.
a) $\begin{aligned} & x^{2}+y^{2}=52 \\ & x^{2}-y^{2}=20\end{aligned}$
b) $\begin{aligned} & y=x^{2}+2 \\ & y=-x^{2}+8\end{aligned}$
$x^{2}+y^{2}=25$
c) $y=\frac{1}{5} x^{2}-5$

Teaching Notes:

- Most students understand this section better if they make a rough sketch of each system before trying to solve it.
- Encourage students to check if their intersection points agree with what the sketch suggested for the number of and the rough positions of intersection points.
- Encourage students to write all of the standard form equations for conic sections on an index card for easy reference.
- Most students have a preferred method of solving systems, either substitution or elimination. Encourage them to master both methods so that they can choose the method that is most appropriate for each situation.

Answers: $1 a)\{(4,3),(3,4)\}$; b) $\{(5,9),(-2,16)\}$; c) $\{(-1,-2)\} ; 2 a)\{(6,4),(6,-4),(-6,4),(-6,-4)\} ;$ b) $\{(\sqrt{3}, 5),(-\sqrt{3}, 5)\}$; c) $\{(0,-5),(5,0),(-5,0)\}$

