Linear Equations in One Variable

Learning Objectives:

- 1. Solve linear equations using properties of equality.
- 2. Solve linear equations that can be simplified by combining like terms.
- 3. Solve linear equations containing fractions or decimals.
- 4. Recognize identities and equations with no solution.

Examples:

- 1. Solve each equation and check.
 - a) x-5=7 b) x+3=15 c) -3x=15 d) $\frac{x}{4}=3$
- 2. Solve each equation and check.
 - a) 4x 2 = 6 + 3xb) 5y - 4 = 10 + 3y

c)
$$3(2x+4) = 9x-3$$

d) $-2(3n-1) - n = -5(n-4)$

- 3. Solve each equation and check.
 - a) $\frac{x}{3} + \frac{x}{2} = \frac{1}{4}$ b) $\frac{2x}{5} \frac{x}{3} = 5$ c) $\frac{2r}{5} 3 = \frac{r}{10}$
 - d) $\frac{28-4x}{3} = x$ e) $\frac{2y-6}{5} = 1-2y$ f) 3.4(2x+5) = -0.2(2x+5)
- 4. Solve each equation.
 - a) 2(x+6) = 12 + 2xb) 4(x+5) + 3 = 5(x+2) - x

Teaching Notes:

- Encourage students to check their solutions.
- Some students prefer to always end up with the variable on the left, while others prefer to always end up with a positive coefficient in front of the variable.
- Some students try to subtract the coefficient from a variable instead of dividing it off.
- Refer students to *The Addition and Multiplication Properties of Equality* and *Solving a Linear Equation in One Variable* charts in the text.

<u>Answers</u>: 1a) 12; b) 12; c) -5; d) 12; 2a) 8; b) 7; c) 5; d) -9; 3a) $\frac{3}{10}$; b) 75; c) 10; d) 4; e) $\frac{11}{12}$; f) -2.5; 4a) {x|x is a real number}; b) \emptyset

An Introduction to Problem Solving

Learning Objectives:

- 1. Write algebraic expressions that can be simplified.
- 2. Apply the steps for problem solving.

Examples:

- 1. Write the following as algebraic expressions. Then simplify.
 - a) The sum of three consecutive integers if the first integer is x
 - b) The perimeter of a rectangle with length x and width x 7
 - c) The total amount of money (in cents) in x quarters, 5x dimes, and (3x-1) nickels
- 2. Solve using the General Strategy for Problem Solving.
 - a) *Number Problem* One number is two times another number. The sum of the numbers is 90. What are the two numbers?
 - b) *Number Problem* Three times the difference of a number and 5 is the same as 1 increased by five times the number plus twice the number.
 - c) *Age Problem* Today Henry is 7 years older than twice his age of 23 years ago. Find Henry's age today.
 - d) *Car Rental* A car rental agency advertised renting a luxury, full-size car for \$19.95 per day and \$0.29 per mile. If you rent this car for 5 days, how many whole miles can you drive if you only have \$200 to spend?
 - e) *Carpentry* A 7-ft board is cut into 2 pieces so that one piece is 3 feet longer than 3 times the shorter piece. If the shorter piece is *x* feet long, find the lengths of both pieces.
 - f) **Unknown Sides** A triangle has sides measuring 2.5x cm, 3x cm, and (2x + 3) cm. It's perimeter measures 60 cm. Find the measures of the sides.
 - g) Unknown Angles Two angles are complementary if their sum is 90°. If the measure of the first angle is x° , and the measure of the second angle is $(3x 2)^\circ$, find the measure of each angle.
 - h) *Lay-offs* A major car manufacturer announced it would lay off 17,000 employees worldwide. This is equivalent to 20% of its work force. Find the size of the work force prior to lay-offs.

Teaching Notes:

- Many students have difficulty with word problems.
- Encourage students to draw and label diagrams when appropriate.
- Some students need to see several examples of consecutive or consecutive odd/even integers.
- Refer students to the *General Strategy for Problem Solving* chart in the text.

<u>Answers</u>: 1a) x+x+1+x+2=3x+3; b) 4x-14; c) 90x-5; 2a) 30, 60; b) -4; c) 39; d) 345 miles; e) 1 foot, 6 feet; f) 19 cm, 22.8 cm, 18.2 cm; g) 23° , 67° ; h) 85,000 employees

M-6

Copyright © 2013 Pearson Education, Inc.

Formulas and Problem Solving

Learning Objectives:

- 1. Solve a formula for a specified variable.
- 2. Use formulas to solve problems.

Examples:

- 1. Solve each equation for the specified variable.
 - a) M = kt for tb) $C = 2\pi r$ for rc) $a^2 + b^2 = c^2$ for a^2 d) 4x + 5y = 16 for ye) P = 2l + 2w for lf) $C = \frac{5}{9}(F - 32)$ for F
- 2. Solve. Round all dollar amounts to two decimal places.
 - a) *Volume* Find the volume of a rectangular crate with dimensions 3 ft by 4 ft by 8 ft.
 - b) *Distance* Sheranda drives at a constant 65 miles per hour. How far will she travel in 4 hours?
 - c) *Compound Interest* Emmanuel puts \$5010 at 9% compounded semiannually for 12 years. What is the value of his account at the end of the 12 years?
 - d) *Circle* Crystal is making a cover for a round table that has a diameter of 46 inches. How much fabric will she need if she wants the cover to fit exactly, with no material hanging off? (Use 3.14 for π and round to two decimal places.)
 - e) *Office Rental* An accountant rents office space. He is charged \$2040 per month for a rectangular office that measures 17 ft by 20 ft. How much is he paying each month in rent per square foot?
 - f) Temperature Michael's cousin Luke was visiting from Montreal during the summer. On a news report, Luke heard that the temperature in Montreal that day was 98°F. He was used to hearing temperature in degrees Celsius. What is 98°F in degrees Celsius?
 - g) *Triangle* A triangular piece of wood needs to be varnished. The base of the triangle is 3 meters and the height is 13 meters. How many cans of varnish will be needed if each can covers 10 square meters?

Teaching Notes:

- Some students are very confused by solving for a variable when other variables are present.
- Many students benefit from seeing a parallel example with numbers instead of variables. For example, next to 1a) solve: 6 = 3t.
- Encourage students to draw and label diagrams when appropriate.
- Refer students to the *Solving Equations for a Specified Variable* chart in the text.

<u>Answers</u>: 1a) $t = \frac{M}{k}$; b) $r = \frac{C}{2\pi}$; c) $a^2 = c^2 - b^2$; d) $y = \frac{16 - 4x}{5}$; e) $l = \frac{P - 2w}{2}$; f) $F = \frac{9}{5}C + 32$; 2a) 96 cubic feet; b) 260 miles; c) \$14;408.83; d) 1;661.06 square inches; e) \$6.00 per square foot; f) 36.67°C; g) 2 cans

Copyright © 2013 Pearson Education, Inc.

Linear Inequalities and Problem Solving

Learning Objectives:

- 1. Use interval notation.
- 2. Solve linear inequalities using the addition property of inequality.
- 3. Solve linear inequalities using the multiplication and the addition properties of inequality.
- 4. Solve problems that can be modeled by linear inequalities.

Examples:

- 1. Graph the solution set of each inequality on a number line and then write it in interval notation.
 - a) $\{x \mid x > 3\}$ b) $\{x \mid x < -2\}$ c) $\{x \mid -4.2 \ge x\}$ d) $\{x \mid -3 < x \le 0\}$
- 2. Solve. Graph the solution set and write it in interval notation.

a)
$$x+2 \le 6$$
 b) $10x < 9x+3$ c) $5x-5 \ge 4x-5$

3. Solve. Graph the solution set and write it in interval notation.

a)
$$\frac{1}{2}x \ge 2$$

b) $2x > -7.2$
c) $-3x \le 6$
d) $2(x+2) \ge x+2$
e) $0.3(6x-1) < 1.4(x-3) - 0.1$
f) $\frac{5}{6} - \frac{3}{4} > \frac{x}{3}$

 Solve. Show your answer as an inequality. A salesperson earns \$2000 a month plus a commission of 20% of sales. Find the minimum amount of sales needed to receive a total income of at least \$6000.

Teaching Notes:

- Some students are very confused by solving for a variable when other variables are present.
- Many students forget to reverse the direction of the inequality symbol when necessary.
- Some students prefer to move the variable in such a way that it has a positive coefficient if possible.
- Refer to the end-of-section exercises for application problems.
- Refer students to the *Addition/Multiplication Property of Inequality* and *Linear Inequality in One Variable* charts in the text.

<u>Answers</u>: (graphing answers at end of mini-lectures) 1a) $(3,\infty)$; b) $(-\infty,-2)$; c) $(-\infty,-4.2]$; d) (-3,0]; 2a) $(-\infty,4]$; b) $(-\infty,3)$; c) $[0,\infty)$; 3a) $[4,\infty)$; b) $(-3.6,\infty)$; c) $[-2,\infty)$; d) $x \le -2$; e) x < -10; f) $x < \frac{1}{4}$; 4) $\{x \mid x \ge \$20,000\}$

Compound Inequalities

Learning Objectives:

- 1. Find the intersection of two sets.
- 2. Solve compound inequalities containing and.
- 3. Find the union of two sets.
- 4. Solve compound inequalities containing *or*.

Examples:

- 1. If $A = \{x \mid x \text{ is an even integer}\}$, $B = \{x \mid x \text{ is an odd integer}\}$, $C = \{1, 2, 3, 4\}$, and $D = \{3, 4, 5, 6\}$, list the elements of each set.
 - a) $C \cap D$ b) $B \cap C$ c) $A \cap B$
- 2. Solve each compound inequality by graphing the solution on a number line.
 - a) $x \le 1$ and $x \ge -3$ b) x < 1 and x > 4 c) $x \ge -3$ and x > 2

Solve each compound inequality. Write solutions in interval notation.

- d) $x+3 \ge 4$ and $5x-2 \ge 8$ e) -5x < -15 and x-15 < -10
- f) $-4 \le x + 1 \le -2$ g) $-3 < \frac{2}{3}x 1 < 1$ h) $-1 \le \frac{-3x + 4}{5} \le 1$

3. If $A = \{x \mid x \text{ is an even integer}\}$, $B = \{x \mid x \text{ is an odd integer}\}$, $C = \{3,4,5,6\}$ and $D = \{4,5,6,7\}$, list the elements of each set. a) $B \cup C$ b) $C \cup D$ c) $A \cup D$

- 4. Solve each compound inequality by graphing the solution on a number line.
 - a) $x \ge -3$ or $x \le 3$ b) x < -1 or x < 1c) $x \ge -2$ or $x \le -3$

Solve each compound inequality. Write solutions in interval notation.

d) $-10x \le 20$ or $3x - 4 \ge 2$ e) x + 8 < -1 or 5x > -15 f) $6(x-2) \ge -12$ or $4 - x \le 10$

Teaching Notes:

• In problems 2a-c) and 4a-c), show students how each inequality can be graphed separately on its own number line. Then the solution graph is the intersection (or union) of the individual graphs.

<u>Answers</u>: (graphing answers at end of mini-lectures) 1a) {3,4}; b) {1,3}; c) \emptyset ; 2a) [-3,1]; b) no solution; c) (2, ∞); d) [2, ∞); e) (3,5); f) [-5,-3]; g) (-3,3); h) $\left[-\frac{1}{3},3\right]$; 3a) {x|x is an odd integer, x=4, x=6}; b) {1,2,3,4,5,6}; c) {x|x is an even integer, x=3, x=5}; 4a) all real numbers; b) (- ∞ ,1); c) (- ∞ ,-3] \cup [-2, ∞); d) [-2, ∞); e) (- ∞ ,-9) \cup (-3,- ∞); f) [-6, ∞)

Copyright © 2013 Pearson Education, Inc.