Mini-Lecture 4.1

Solving Systems of Linear Equations in Two Variables

Learning Objectives:

1. Determine whether an ordered pair is a solution of a system of two linear equations.
2. Solve a system by graphing.
3. Solve a system by substitution.
4. Solve a system by elimination.

Examples:

1. Determine whether the given ordered pair is a solution of the system.
a) $\begin{aligned} & x+y=4 \\ & x-y=2\end{aligned} \quad ;(3,1)$
b) $\begin{aligned} & y=4 \\ & x=-3 y \quad ;(-6,4)\end{aligned}$
c) $\begin{aligned} 2 x+y & =4 \\ -3 x & =2 y+8\end{aligned} \quad ;\left(\frac{1}{2}, 3\right)$
2. Solve each system by graphing.
a) $\begin{aligned} & x+y=4 \\ & x-y=2\end{aligned}$
b) $\begin{array}{r}2 x+4 y=10 \\ 4 x+3 y=10\end{array}$
c) $\begin{aligned} & y=-x+3 \\ & 2 x+2 y=-1\end{aligned}$
3. Use the substitution method to solve each system of equations.
a) $\begin{aligned} & x+y=4 \\ & x-y=2\end{aligned}$
b) $\frac{1}{4} x+\frac{1}{4} y=2$
$x-y=2$
c) $\begin{aligned} & y=-3 x+8 \\ & 12 x+4 y=32\end{aligned}$
4. Use the elimination method to solve each system of equations.
a) $x+y=4$
$x-y=2$
b) $\begin{aligned} & x-6 y=-9 \\ & 8 x-6 y=-30\end{aligned}$
c) $\begin{aligned} & x-4 y=-8 \\ & -6 x-3 y=-6\end{aligned}$
d) $\begin{aligned} 3 x+6 y & =3 \\ 2 x+9 y & =-8\end{aligned}$
e) $\begin{aligned} & 6 x-8 y=8 \\ & 12 x=16 y+24\end{aligned}$
f) $\begin{aligned} & -6 x-4 y=-2 \\ & -12 y=-6+18 x\end{aligned}$

Teaching Notes:

- Help students visualize a system by graphing examples of the three possible results: one solution, no solution, ∞ solutions.
- Some students have trouble with the substitution method when fractions are involved.
- Most students prefer the addition method.
- Encourage students to check final answers.
- Many students have trouble drawing the conclusion of "no solution" or "infinite solutions" from the non-graphing methods.
- Refer students to the Possible Solutions to Systems of Two Linear Equations, and Solving a System of Two Equations Using the Substitution/Elimination Method charts in the text.

Answers: (graphing answers at end of mini-lectures) la) yes; b) no; c) no; 2a) (3,1); b) (1,2); c) \varnothing; 3a) (3,1); b) $(5,3)$; c) $\{(x, y) \mid y=-3 x+8\}$; 4a) $(3,1)$; b) $(-3,1)$; c) $(0,2)$; d) $(5,-2)$; e) \varnothing; f) $\{(x, y)-6 x-4 y=-2\}$

Mini-Lecture 4.2

Solving Systems of Linear Equations in Three Variables

Learning Objectives:

1. Solve a system of three linear equations in three variables.

Examples:

1. Solve each system.
$x+y+z=3$
$5 x+3 y+z=25$
b) $3 x-3 y-z=7$
$4 x+y+4 z=14$
a) $x-y+2 z=-1$
$4 x+y+z=15$
c) $\begin{aligned} 5 y+4 z & =-15 \\ z & =-5\end{aligned}$

$$
\text { d) } \begin{aligned}
& x-y+4 z=3 \\
& 5 x+z=0 \\
& x+3 y+z=-9
\end{aligned}
$$

$\frac{2}{3} x-\frac{1}{2} y+2 z=-18$
e) $x-\frac{2}{3} y-\frac{1}{2} z=-12$
$x-\frac{1}{2} y-z=-8$

Teaching Notes:

- Students need to be extremely neat and organized to succeed with these.
- Most students prefer to use the elimination method repeatedly.
- Some students prefer to use the substitution method to eliminate the first variable whenever it is possible to do so without generating fractions.
- Most students have trouble visualizing these systems. Refer them to the figures of intersecting planes in the text.
- Refer students to the Solving a System of Three Linear Equations by the Elimination Method chart in the text.

Answers: $1 a)(4,1,-2) ; b)(4,2,-1) ; c)(-1,1,-5) ; d)(0,-3,0) ; e)(-6,12,-4)$

Mini-Lecture 4.5

Systems of Linear Inequalities

Learning Objectives:

1. Graph a system of linear inequalities.

Examples:

1. Graph the solutions of each system of two linear inequalities.
a) $y \geq 2 x-4$
b) $\begin{aligned} & y \leq 2 x-1 \\ & x+y>-4\end{aligned}$
c) $\begin{aligned} & y \leq 2 x+1 \\ & y<-3 x\end{aligned}$
d) $x+3 y>-6$
e) $\begin{aligned} & x \geq-2 \\ & y \geq 6\end{aligned}$

Graph the solutions of each system of three linear inequalities.
$x+y \geq 1$
$2 x+3 y \geq 6$
$2 x+3 y \leq 6$
f) $x-y \geq 1$
$x \leq 4$
g) $x-y \leq 3$
$y \leq 2$
h) $x-y \geq 3$ $x \geq 1$

Teaching Notes:

- Remind students to use a dashed line for $<$ or $>$ and a solid line for \leq or \geq.
- Encourage students to use different colors for each line.
- Encourage students to check their graphs using a test point from the solution region.
- Refer students to the Graphing the Solutions of a System of Linear Inequalities chart in the text.

Answers: (graphing answers at end of mini-lectures)

