Rational Functions and Multiplying and Dividing Rational Expressions

Learning Objectives:

- 1. Find the domain of a rational expression.
- 2. Simplify rational expressions.
- 3. Multiply rational expressions.
- 4. Divide rational expressions.
- 5. Use rational functions in applications.

Examples:

1. Find the domain of each rational expression.

a)
$$f(x) = \frac{2+3x}{4}$$
 b) $g(x) = -\frac{6x+x^2}{5x}$ c) $h(x) = \frac{2-5x}{-7+x}$

d)
$$p(x) = \frac{-9}{7x+5}$$
 e) $f(x) = \frac{x}{2x^2 + x - 3}$

2. Simplify each rational expression.

a)
$$\frac{2x^2 - 6x}{2x}$$
 b) $\frac{x^2 - 81}{9 + x}$ c) $\frac{x^2 - 10x + 25}{x - 5}$

d)
$$\frac{x-8}{8-x}$$
 e) $\frac{y^2+5y+6}{y^2+10y+21}$ f) $\frac{y^3-64}{4y-16}$

3. Multiply and simplify.

a)
$$\frac{3x-3}{x} \cdot \frac{8x^2}{5x-5}$$
 b) $\frac{24xy^2}{x^2-49} \cdot \frac{3x-21}{8x^2y^2}$ c) $\frac{x^2+7x+10}{x^2+8x+15} \cdot \frac{x^2+3x}{x^2-7x-18}$

4. Divide and simplify.

a)
$$\frac{4x^2}{5} \div \frac{x^3}{40}$$
 b) $\frac{x^2 + 5x - 6}{x^2 + 9x + 18} \div \frac{x^2 - 1}{x^2 + 7x + 12}$ c) $\frac{x^2 - 4x}{x^3 - 64} \div \frac{2x}{2x^2 + 8x + 32}$

5. Use rational functions in applications. A company's cost per book for printing *x* particular books is given by the rational functions

 $C(x) = \frac{0.8x + 5000}{x}$. Find the cost per book for printing a) 300 books b) 3000 books

Teaching Notes:

- Many students need a review of simplifying, multiplying and dividing numerical fractions before attempting algebraic ones.
- Many students have trouble with problems where the factors in the numerator and denominator have opposite signs.
- Refer to the end-of-section exercises for applied problems.
- Refer students to the Simplifying/Multiplying/Dividing Rational Expressions chart in the text.

<u>Answers</u>: 1a) {x | x is a real number}; b) {x | x is a real number and $x\neq 0$ }; c) {x | x is a real number and $x\neq 7$ }; d) {x | x is a real number and $x\neq -\frac{5}{7}$ }; e) {x | x is a real number and $x\neq -\frac{3}{2}$; $x\neq 1$ }; 2a) x-3; b) x-9; c) x-5; d) -1;

$$e) \ \frac{y+2}{y+7}; \ f) \ \frac{y^2+4y+16}{4}; \ 3a) \ \frac{24x}{5}; \ b) \ \frac{9}{x(x+7)}; \ c) \ \frac{x}{x-9}; \ 4a) \ \frac{32}{5x}; \ b) \ \frac{x+4}{x+1}; \ c) \ 1; \ 5a) \ \$17.47; \ b) \ \$2.47$$

Adding and Subtracting Rational Expressions

Learning Objectives:

- 1. Add or subtract rational expressions with a common denominator.
- 2. Identify the Least Common Denominator (LCD) of two or more rational expressions.
- 3. Add or subtract rational expressions with unlike denominators.

Examples:

1. Add or subtract as indicated.

a)
$$\frac{3}{x} + \frac{8}{x}$$
 b) $\frac{x^2}{x+3} - \frac{9}{x+3}$ c) $\frac{8x-5}{x^2+6x+8} + \frac{7-7x}{x^2+6x+8}$

2. Find the LCD of the rational expressions in each list.

a)
$$\frac{3}{11}, \frac{2}{7x}$$

b) $\frac{6}{7y}, \frac{3}{y^2}$
c) $\frac{4}{x-3}, \frac{9}{x+3}$
d) $\frac{6}{x^2 - y^2}, \frac{5}{x^2 + 2xy + y^2}, \frac{1}{8}$

- 3. Add or subtract as indicated. If possible, simplify your answer.
 - a) $\frac{5}{6y} \frac{9}{5y}$ b) $\frac{7}{x^2} + \frac{3}{x}$ c) $\frac{6}{r} + \frac{8}{r-2}$ d) $\frac{1}{x-4} - \frac{1}{4-x}$ e) $\frac{x+3}{x^2+4x-12} + \frac{3x+2}{x^2+14x+48}$ f) $\frac{7x}{x+1} + \frac{8}{x-1} - \frac{14}{x^2-1}$ g) $\frac{10}{x^2+5x} + \frac{6}{x} - \frac{2}{x+5}$

Teaching Notes:

- Most students need a review of adding, subtracting, and finding LCDs of numerical fractions before attempting algebraic ones.
- Many students find this section difficult.
- Some students need to see more examples for objective 2. Extra time spent here is well worth it and pays off with greater success in objective 3.
- Refer students to the *Adding or Subtracting Rational Expressions with Common/Different Denominators* and *Finding the Least Common Denominator* charts in the text.

Answers: 1a)
$$\frac{11}{x}$$
; b) x-3; c) $\frac{1}{x+4}$; 2a) 77x; b) 7y²; c) (x-3)(x+3); d) 8(x+y)²(x-y); 3a) $\frac{-29}{30y}$; b) $\frac{7+3x}{x^2}$; c) $\frac{14r-12}{r(r-2)}$; d) $\frac{2}{x-4}$; e) $\frac{4x^2+7x+20}{(x-2)(x+6)(x+8)}$; f) $\frac{7x-6}{x-1}$; g) $\frac{4x+40}{x(x+5)}$

Simplifying Complex Fractions

Learning Objectives:

- 1. Simplify complex fractions by simplifying the numerator and denominator and then dividing.
- 2. Simplify complex fractions by multiplying by a common denominator.
- 3. Simplify expressions with negative exponents.

Examples:

1. Simplify each complex fraction by simplifying the numerator and denominator and then dividing.

a)
$$\frac{3+\frac{1}{8}}{4-\frac{5}{8}}$$

b) $\frac{\frac{x}{x+4}}{\frac{4}{x+4}}$
c) $\frac{\frac{9}{a}+9}{\frac{9}{a}-9}$
d) $\frac{\frac{16x^2-25y^2}{xy}}{\frac{4}{y}-\frac{5}{x}}$
e) $\frac{\frac{2}{x}+\frac{9}{x^2}}{\frac{4}{x^2}-\frac{81}{x}}$
f) $\frac{\frac{4}{5-x}+\frac{5}{x-5}}{\frac{2}{x}+\frac{3}{x-5}}$
g) $\frac{\frac{4}{x+5}}{\frac{1}{x-5}-\frac{2}{x^2-25}}$
h) $\frac{\frac{3}{x+5}+\frac{9}{x+7}}{\frac{2x+11}{x^2+12x+35}}$

- 2. Simplify selected problems from *1a*) through *1h*) by multiplying the least common denominator.
- 3. Simplify.

a)
$$\frac{x^{-2} + y^{-1}}{x^{-3}}$$
 b) $\frac{2x^{-1} + 5y^{-1}}{-7x^{-2} - 3y^{-2}}$ c) $\frac{-6x^{-1} + (6y)^{-1}}{x^{-2}}$

Teaching Notes:

- Stronger students tend to prefer using the multiply by LCD method.
- Many students need to be reminded of how to deal with negative exponents before attempting objective 3.
- Refer students to the *Simplifying a Complex Fraction: Method 1/Method 2* charts in the text.

Answers: 1a)
$$\frac{25}{27}$$
; b) $\frac{x}{4}$; c) $\frac{1+a}{1-a}$; d) $4x+5y$; e) $\frac{2x+9}{4-81x}$; f) $\frac{x}{5x-10}$; g) $\frac{4x-20}{x+3}$; h) 6; 2a-h) same as 1a-h);
3a) $\frac{xy+x^3}{y}$; b) $\frac{2xy^2+5x^2y}{-7y^2-3x^2}$; c) $\frac{-36xy+x^2}{6y}$

Copyright © 2013 Pearson Education, Inc.

M-34

Dividing Polynomials: Long Division and Synthetic Division

Learning Objectives:

- 1. Divide a polynomial by a monomial.
- 2. Divide by a polynomial.
- 3. Use synthetic division to divide a polynomial by a binomial.
- 4. Use the remainder theorem to evaluate polynomials.

Examples:

1. Divide.

a)
$$8x^4 - 4x^3$$
 by $4x^2$ b) $\frac{3x^3y + 9x^2y^2 - 3xy^3}{3xy}$ c) $\frac{8x^5y + 32x^4y - 16x^3y^2}{-4x^4y}$

2. Divide.

a)
$$(x^2 + 12x + 35) \div (x + 5)$$

b) $(5x^2 - 17x + 14) \div (x - 2)$
c) $(-4x^3 - 8x^2 + 7x - 1) \div (2x - 1)$
d) $(20x + 12x^2 + 3) \div (-6x - 1)$

3. Use synthetic division to divide.

a)
$$\frac{x^2 - 4x - 45}{x + 5}$$

b) $\frac{2x^2 - 9x - 35}{x - 7}$
c) $\frac{-2x^3 - 6x^2 + 14x + 24}{x + 4}$
d) $\frac{x^4 + 16}{x - 2}$

4. Use the remainder theorem to find P(c).

a)
$$P(x) = x^2 + 3x - 8$$
; $c = 2$
b) $P(x) = 5x^4 + 3x^2 - 2x + 12$; $c = -2$

Teaching Notes:

- Remind students to check their answers by multiplying.
- Encourage students to write the intermediate step $\frac{a+b}{c} = \frac{a}{c} + \frac{b}{c}$ when dividing by a monomial.
- Most students understand dividing by a binomial better if a numerical long division problem is shown in parallel.
- Most students understand the synthetic division process after a couple of examples.
- Most students prefer synthetic division over long division.

<u>Answers</u>: 1a) $2x^2 - x$; b) $x^2 + 3xy - y^2$; c) $-2x - 8 + \frac{4y}{x}$; 2a) x + 7; b) 5x - 7; c) $-2x^2 - 5x + 1$; d) -2x - 3; 3a) x - 9; b) 2x + 5; c) $-2x^2 + 2x + 6$; d) $x^3 + 2x^2 + 4x + 8 + \frac{32}{x-2}$; 4a) 2; b) 108

Solving Equations Containing Rational Expressions

Learning Objectives:

1. Solve equations containing rational expressions.

Examples:

1. Solve each equation and check the solution.

a)
$$\frac{2}{5}y - \frac{1}{3}y = 5$$
 b) $\frac{3y+6}{5} = 1 + \frac{3}{4}y$

c)
$$\frac{14}{x} = 5 - \frac{1}{x}$$
 d) $\frac{x-5}{x+2} = \frac{12}{x+2}$

e)
$$1 + \frac{1}{x} = \frac{20}{x^2}$$
 f) $\frac{4x+1}{2x-5} = \frac{6x-1}{3x-6}$

g)
$$\frac{4}{3x} - \frac{1}{x+1} = \frac{1}{2x^2 + 2x}$$
 h) $\frac{x+6}{x^2 + 5x + 4} - \frac{6}{x^2 + 2x + 1} = \frac{x-6}{x^2 + 5x + 4}$

i)
$$\frac{x}{x-5} - 2 = \frac{5}{x-5}$$
 j) $\frac{1}{x+5} + \frac{2}{x+3} = \frac{-2}{x^2 + 8x + 15}$

Teaching Notes:

- Remind students to always determine the values not allowed for *x* before solving a rational expression.
- Many students are confused by the concept of an extraneous solution. Show them a simple example such as:

 $x = 3 \rightarrow x \cdot x = 3 \cdot x \rightarrow x^2 = 3x \rightarrow x^2 - 3x = 0 \rightarrow x = 0, 3; x = 0$ is extraneous.

- Some students prefer to make equivalent fractions with a common denominator, and then set the numerators equal to each other.
- Refer students to the *Solving an Equation Containing Rational Expressions* chart in the text.

Answers: 1a) {75}; b)
$$\left\{\frac{4}{3}\right\}$$
; c) {3}; d) {17}; e) {-5;4}; f) {1}; g) $\left\{-\frac{5}{2}\right\}$; h) {2}; i) \emptyset ; j) \emptyset

Rational Equations and Problem Solving

Learning Objectives:

- 1. Solve an equation containing rational expressions for a specified variable.
- 2. Solve number problems by writing equations containing rational expressions.
- 3. Solve problems modeled by proportions.
- 4. Solve problems about work.
- 5. Solve problems about distance, rate, and time.

Examples:

1. Solve each equation for the specific variable.

a)
$$\frac{PV}{T} = \frac{pv}{t}$$
 for V
b) $\frac{1}{a} + \frac{1}{b} = \frac{1}{c}$ for c
c) $P = \frac{A}{1+rt}$ for r
d) $A = \frac{1}{2}h(B+b)$ for B
e) $F = \frac{-GMm}{r^2}$ for M
f) $S = \frac{a_1 - a_n r}{1 - r}$ for a_1

2. Solve.

- a) *Number* Two times the reciprocal of a number equals 4 times the reciprocal of 5. Find the number.
- b) *Proportion* The ratio of the weight of an object on Earth to an object on Planet X is 4 to 9. If a person weighs 230 pounds on Earth, find his weight on Planet X. Round to the nearest whole number.
- c) *Work* One pump can drain a pool in 9 minutes. When a second pump is also used, the pool only takes 6 minutes to drain. How long would it take the second pump to drain the pool if it were the only pump in use?
- d) *Rate* Alex can run 5 miles per hour on level ground on a still day. One windy day he runs 11 miles with the wind, and in the same amount of time runs 4 miles against the wind. What is the rate of the wind?

Teaching Notes:

- Many students find this section difficult.
- Most students need to set up a chart to solve work and rate problems. Refer them to the textbook examples for samples.
- Encourage students to check whether their solutions seem reasonable.
- Refer students to the *Solving an Equation for a Specified Variable* chart in the text.

<u>Answers</u>: 1a) $V = \frac{pvT}{tP}$; b) $c = \frac{ab}{b+a}$; c) $r = \frac{A-P}{Pt}$; d) $B = \frac{2A-bh}{h}$; e) $M = -\frac{Fr^2}{Gm}$; f) $a_1 = S(1-r) + a_n r$; 2a) $\frac{5}{2}$; b) 518 pounds; c) 18 minutes; d) $2\frac{1}{3}$ mph

Copyright © 2013 Pearson Education, Inc.

M-37

Variation and Problem Solving

Learning Objectives:

- 1. Solve problems involving direct variation.
- 2. Solve problems involving inverse variation.
- 3. Solve problems involving joint variation.
- 4. Solve problems involving combined variation.

Examples:

- 1. Find the constant of variation and the *direct* variation equation for each situation. Then solve as indicated.
 - a) y = 4 when x = 3. Find y when x = 9.
 - b) The amount of gas that a helicopter uses is directly proportional to the number of hours spent flying. The helicopter flies for 3 hours and uses 18 gallons of fuel. Find the number of gallons of fuel that the helicopter uses to fly for 5 hours.
- 2. Find the constant of variation and the *inverse* variation equation for each situation. Then solve as indicated.
 - a) y = 4 when x = 3. Find y when x = 6.
 - b) The amount of time it takes a swimmer to swim a race is inversely proportional to the swimmer's speed. A swimmer finishes a race in 50 seconds with a speed of 3 feet per second. Find the speed if it takes 25 seconds to finish the race.
- 3. Find the constant of variation and the *joint* or the *combined* variation equation for each situation. Then solve as indicated.
 - a) *r* varies jointly as the square of *s* and the square of *t*. r = 12 when s = 1 and t = 2.
 - b) x is directly proportional to y and inversely proportional to the cube of z. x = 3 when y = 3 and z = 2.
 - c) The volume V of a given mass of gas varies directly as the temperature T and inversely as the pressure P. A measuring device is calibrated to give $V = 300 \text{ in}^3$ when $T = 250^\circ$ and $P = 10 \text{ lb}/\text{in}^2$. What is the volume on this device when the temperature is 370° and the pressure is $20 \text{ lb}/\text{in}^2$?

Teaching Notes:

- Most students will understand the concepts of direct and inverse variation better if real-life examples are discussed in a qualitative way for problem 1.
- Some students are confused by solving for the constant of variation and then using that constant in the original equation and solving for a different variable.

<u>Answers</u>: 1a) $k = \frac{4}{3}, y = \frac{4}{3}x, y = 12$; b) k=6, g=6h, 30 gallons of fuel; 2a) $k = 12, y = \frac{12}{x}, y = 2$; b) $k=150, t=\frac{150}{s}, 6$ feet per second; 3a) $k=3, r=3s^2t^2$; b) $k=8, x=\frac{8y}{z^3}$; c) $k=12, V=\frac{12T}{P}, 222$ in³

Copyright © 2013 Pearson Education, Inc.

M-38