Use scantron form no. 882-E

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Solve the problem.

ine provienie					
1) An object is thrown upward from the top of a 160-foot building with an initial velocity of 48 feet				1)	
per second. The height h of the object after t seconds is given by the quadratic equation					
$h = -16t^2 + 48t + 160.$	When will the object hit t	he ground?			
A) 2 sec	B) 160 sec	C) 5 sec	D) –2 sec		

2) _____

Factor completely, or state that the polynomial is prime.

1 ,	1 2	1	
2) $x^5 + 11x^4 + 30x^3$			
A) $x^{3}(x+5)(x+6)$			B) $x^{3}(x+5)(x-6)$
C) $x5(x^2 + 11x + 30)$			D) $x^{3}(x-5)(x+6)$

Solve the problem.

3) The width of a rectangle is 6 kilometers less than twice its length. If its area is 176 square	3)
kilometers, find the dimensions of the rectangle.	

A) length = 11 km, width = 16 kmB) width = 11 km, length = 16 km

C) length = 3 km, width = $\frac{176}{3}$ km	D) length = 8 km, width = 10 km
--	---------------------------------

Solve the quadratic equation.

4) $(x+4)(x+1) = 54$				4)
A) {-10, 5}	B) {-5, 10}	C) {1, 4}	D) {-4, -1}	

Factor completely, or state that the polynomial is prime.

5) $x^3 - x^2 + 6x - 6$ A) $(x^2 + 6)(6x - 1)$	B) $(x^2 + 6)(x - 1)$	C) (x ² – 6)(x – 1)	D) $(x^2 - 1)(x + 6)$	5)
6) $x^3 - x^2 - 56x$ A) $x(x+7)(x-8)$	B) prime	C) x(x + 8)(x - 7)	D) $(x^2 + 1)(x - 56)$	6)
7) $32x^3 + 0x^2 - 2x$				7)

A) 2x(4x - 1)(4x + 1)B) x(4x - 1)(8x + 2)C) x(8x - 2)(4x + 1)D) $2(4x^2 - 1)(4x + 1)$

Find all values that make the rational expression undefined. If the rational expression is defined for all real numbers, so state.

8)
$$\frac{x^2 - 4}{x^2 - 11x + 18}$$

A) $x = 2, x = -2$
B) $x = -2, x = -9$
C) $x = 2, x = 9$
D) $x = 0$

Perform the indicated operation. Simplify if possible.

9)
$$\frac{x^2 - 2x}{x^2 - 4} \div \frac{x + 3}{x^2 + 5x + 6}$$

A) $\frac{x}{(x + 2)(x + 2)}$
B) x
C) $\frac{1}{x}$
D) -x

$$10) \frac{14}{3x - 18} + \frac{x}{x^2 - 36}$$

$$A) \frac{17x}{(x + 6)(x - 6)}$$

$$B) \frac{17x + 84}{3(x + 6)(x - 6)}$$

$$C) \frac{x + 14}{3(x + 6)(x - 6)}$$

$$D) \frac{15x + 84}{(x + 6)(x - 6)}$$

Simplify the complex rational expression.

Perform the indicated operation. Simplify if possible.

$$12) \frac{4}{x^2 - 3x + 2} + \frac{7}{x^2 - 1}$$

$$A) \frac{56x - 10}{(x - 1)(x + 1)(x - 2)}$$

$$B) \frac{11x - 10}{(x - 1)(x - 2)}$$

$$C) \frac{10x - 11}{(x - 1)(x + 1)(x - 2)}$$

$$D) \frac{11x - 10}{(x - 1)(x + 1)(x - 2)}$$

Solve the problem.

13) A painter can finish painting a house in 8 hours. Her assistant takes 10 hours to finish the same 13)job. How long would it take for them to complete the job if they were working together?

A) 9 hr B) 7 hr C)
$$\frac{9}{40}$$
 hr D) $4\frac{4}{9}$ hr

Perform the indicated operation. Simplify if possible.

$$\begin{array}{ccc} 14) & \frac{7}{x+9} + 4 \\ A) & \frac{4x+43}{x+9} & B) & \frac{11}{x+9} & C) & \frac{4x+99}{x+9} & D) & \frac{4x+29}{x+9} \end{array}$$

14) _____

$$15) \frac{t^2 - b^2}{t + b} \div \frac{t}{t^2 + tb}$$

$$A) t - b \qquad B) - \frac{1}{t} \qquad C) t \qquad D) (t + b)(t - b)$$

16)
$$\frac{x-6}{7} \cdot \frac{28}{x^2 - 36}$$
 16) _____
A) 4(x+6) B) $\frac{x-6}{4}$ C) $\frac{4}{x+6}$ D) $\frac{4}{x-6}$

Given f(x) and g(x), find the following.

17) $f(x) = x^2 + 2x$ and	g(x) = x + 7. Find (f g)(2).			17)
A) 99	B) 36	C) 54	D) 72	

4

Use the graph of f to solve.

18) Find f(-4)

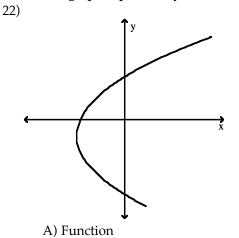
Given f(x) and g(x), find the following.

19)
$$f(x) = x^2 + 7x$$
 and $g(x) = x - 4$. Find $\left(\frac{f}{g}\right)(x)$ and $\left(\frac{f}{g}\right)(-1)$.
A) $\frac{x^2 + 7x}{x - 4}$; $\frac{3}{2}$ B) $\frac{x^2 + 7x}{x - 4}$; $\frac{6}{5}$ C) $\frac{x^2 + 7x}{x - 4}$; $-\frac{3}{2}$ D) $\frac{x + 7}{-4}$; $-\frac{3}{2}$

Determine whether the relation is a function. Give domain and range of the relation.

20) {(-1, -2), (-1, -1), (-1, 0), (0, 1), (8, 3)}

A) function	B) function
domain: {-1, 0, -1, 8}	domain: {-2, -1, 0, 1, 3}
range: {-2, -1, 0, 1, 3}	range: {-1, 0, -1, 8}
C) not a function	D) not a function
domain: {-1, 0, -1, 8}	domain: {-2, -1, 0, 1, 3}
range: {-2, -1, 0, 1, 3}	range: {-1, 0, -1, 8}

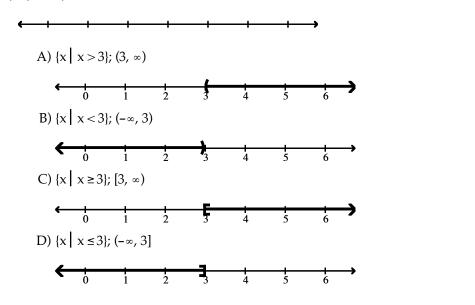

20) _____

18)

Evaluate the function.

21) If
$$f(x) = x^2 - 5x - 7$$
, find $f(-3)$.
A) 17 B) -13 C) 1 D) 31

Determine if the graph represents y as a function of x.



B) Not a function

22)

24) _____

Solve and graph the solution set on a number line. Express the solution set in both set-builder and interval notations. 23) 5(3x-1) < 20x - 2023)

Find the solution set for the equation.

24) |-9x-5| = |7+2x|

A)
$$\emptyset$$
 B) $\left\{-\frac{12}{11}\right\}$ C) $\left\{-\frac{12}{11}, -\frac{2}{7}\right\}$ D) $\left\{-\frac{12}{11}, \frac{2}{7}\right\}$

Solve the problem.

- 25) A company is planning to manufacture copy machines. The fixed cost will be \$30,000 and it will cost \$7000 to produce each copier. Each copier will be sold for \$12,000.
 - a. Write the cost function, C. of producing x copiers.
 - b. Write the revenue function, R, from the sale of x copiers.
 - c. Write the profit function, P, from producing and selling x copiers.
 - d. More than how many copiers must be produced and sold to have a profit?

A) a. $C(x) = 7000x + 30,000$	B) a. $C(x) = 7000x + 30,000$
b. $R(x) = 12,000x$	b. $R(x) = 12,000x$
c. $P(x) = 5000x - 30,000$	c. $P(x) = 5000x - 30,000$
d. 6 copiers	d. 60 copiers
C) a. $C(x) = 7000x + 30,000$	D) a. $C(x) = 12,000x + 30,000$
b. $R(x) = 12,000x$	b. $R(x) = 7000x$
c. $P(x) = 5000x + 30,000$	c. $P(x) = 5000x - 30,000$
d. 6 copiers	d. 6 copiers

Solve the compound inequality. Except for the empty set, express the solution set in both set-builder and interval notations. Graph the solution set on a number line.

A) $\{x \mid -1 \le x \le 3\}$; [-1, 3] $\begin{array}{c} -7 -6 -5 -4 -3 -2 -1 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ \end{array}$ B) $\{x \mid -1 < x < 3\}$; (-1, 3) $\begin{array}{c} -7 -6 -5 -4 -3 -2 -1 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ \end{array}$ C) $\{x \mid -1 < x \le 3\}$; (-1, 3] $\begin{array}{c} -7 -6 -5 -4 -3 -2 -1 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ \end{array}$ D) $\{x \mid -1 \le x < 3\}$; [-1, 3] $\begin{array}{c} -7 -6 -5 -4 -3 -2 -1 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ \end{array}$ D) $\{x \mid -1 \le x < 3\}$; [-1, 3)

26) 7x + 5 < 26 and $8x + 2 \ge -6$

Perform the indicated operation. Write the result in the form a + bi.

25) _____

26)

Simplify the expression. Assume that variables can represent any real number.

Rationalize the denominator. Simplify, if possible. Assume that any variables represent positive real numbers.

31)
$$\frac{\sqrt{11} + \sqrt{2}}{\sqrt{11} - \sqrt{2}}$$

A) $\frac{13 + 2\sqrt{22}}{9}$
B) $\frac{125 + 2\sqrt{22}}{117}$
C) $\frac{13 + 2\sqrt{22}}{117}$
D) $\frac{125 + 2\sqrt{22}}{9}$

Perform the indicated operation and, if possible, simplify. Assume that all variables represent positive real numbers.

32) $\sqrt[4]{8x^{3}y} \cdot \sqrt[4]{6xy^{2}}$				32)
A) $2x\sqrt[4]{3y3}$	B) $x\sqrt[4]{6y^3}$	C) $x\sqrt[4]{3y^3}$	D) 6xy	
33) $(9\sqrt{2} + 10\sqrt{5})(10)$	$\sqrt{2} + 10\sqrt{5}$			33)
A) 680 + 190 $\sqrt{10}$		B) 90 √2 + 100 •		
C) -320 + 190 🗸 1	10	D) 90 \[colored]{2} + 100 \[colored]{2} + 100 \[colored]{2} +	$\sqrt{5}$ + 190 $\sqrt{10}$	
	1 1			

Without solving the given quadratic equation, determine the number and type of solutions.

34) $2x^2 = -2x - 3$		34)
A) One (repeated) rational solution	B) Two rational solutions	
C) Two irrational solutions	D) Two imaginary solutions	

Solve the problem.

F				
35) April shoots an arrow upward into the air at a speed of 32 feet per second from a platform that is			35)	
22 feet high. The height of the arrow is given by the function $h(t) = -16t^2 + 32t + 22$, where t is the				
time is seconds. Wha	at is the maximum heigh	t of the arrow?		
A) 21 ft	B) 16 ft	C) 38 ft	D) 22 ft	

Solve by completing the square.

$36) x^2 - 8x - 7 = 0$				36)
A) $\{8 \pm \sqrt{71}\}$	B) $\{-4 \pm \sqrt{23}\}$	C) $\{4 \pm \sqrt{7}\}$	D) $\{4 \pm \sqrt{23}\}$	

Solve the problem.

37) An object is propelled vertically upward from the top of a 208-foot building. The quadratic 37) function $s(t) = -16t^2 + 240t + 208$ models the ball's height above the ground, s(t), in feet, t seconds after it was thrown. After how many seconds does the object reach its maximum height? Round to the nearest tenth of a second if necessary. A) 7.5 sec B) 2 sec C) 15.8 sec D) 0.8 sec

Solve the equation by makin 38) $x^2/3 + 4x^1/3 - 5 = 1$		on.		38)
	B) {-1, 125}	C) {-5, 1}	D) {-125, 1}	50)
Without solving the given quadratic equation, determine the number and type of solutions.				
$39) x^2 - 5x - 7 = 0$				
A) Two rational solutions C) One (repeated) rational solution		B) Two imaginary solutionsD) Two irrational solutions		
C) One (repeate	eu) rational solution	D) Two irrational s		
Simplify the expression.				
40) ln e6y				40)
A) 6y	B) ln 6y	C) y6	D) e6y	
-				
Solve.				
	ched to the top of a 28-foot a		be anchored 28 feet	41)
from the base of th	e antenna, what length of wi	re is required?		
A) 28 ft	B) 28 √ 2 ft	C) 1568 ft	D) 56 ft	
Solve the problem.42) Shelly can cut a lawn with a riding mower in 2 hours less time than it takes William to cut the lawn with a push mower. If they can cut the lawn in 5 hours working together find how long to the nearest tenth of an hour it takes for William to cut the lawn alone.				
A) 9.2 hours	B) 9.1 hours	C) 11.1 hours	D) 11.2 hours	
Use properties of logarithms logarithmic expressions wit		expression as much as po	ossible. Where possible,	evaluate
43) $\log_{b}\left(\frac{xv^2}{z^4}\right)$				43)
A) log _b x+2log _b	y – 4log _b z	B) $\log_b x + \log_b y^2 - $	· log _b z4	
C) $\log_b x + \log_b y^2 + \log_b z^4$ D) $\log_b x + 2\log_b y + 4\log_b z$				
· 00 00	, OD	, op op,	<i>с</i> р	

Use properties of logarithms to condense the logarithmic expression. Write the expression as a single logarithm whose coefficient is 1. Where possible, evaluate logarithmic expressions.

$$\begin{array}{ccc} 44) \frac{1}{2} \log_6 x + \log_6 y & & & & \\ A) \log_6 y \sqrt{x} & B) \log_6 \sqrt{xy} & C) \log_6 \left(\frac{\sqrt{x}}{y}\right) & D) \log_6 \sqrt{\frac{x}{y}} \end{array}$$

Solve the equation.

45) $3^{3x} - 1 = 9$				45)
A) {0}	B) {3}	C) {2}	D) {1}	

Determine whether the values in each table belong to an exponential function, a logarithmic function, a linear function, or a quadratic function.

46)						46)
	x	y				
	0	1				
	1	2				
	2	4				
	3	16				
	4	32				
	I	A) exponential	B) linear	C) logarithmic	D) quadratic	
		-		-	-	
.1						

47)

48) _____

49) ____

50) _____

Solve the equation.

47) $\log_3(x+4) = -1$

A)
$$\{-11\}$$
 B) $\{13\}$ C) $\left\{-\frac{11}{3}\right\}$ D) $\left\{\frac{13}{3}\right\}$

Provide an appropriate response.

48) Use A = P $\left(1 + \frac{r}{n}\right)^{nt}$ and A = Pert to solve this problem.

Suppose that you have \$6000 to invest. Which investment yields the greater return over 9 years: 6.25% compounded continuously or 6.3% compounded semiannually?

A) \$6000 invested at 6.3% compounded semiannually over 9 years yields the greater return.

B) Both investment plans yield the same return.

C) \$6000 invested at 6.25% compounded continuously over 9 years yields the greater return.

Solve the equation.

49) $\log_7(6x - 1) + \log_7 x = 1$

A) $\left\{\frac{7}{6}\right\}$ B) $\left\{\frac{8}{7}\right\}$ C) $\{-1\}$ D) $\left\{-1, \frac{7}{6}\right\}$

Provide an appropriate response.

50) Use a calculator to evaluate $\log_4 25$ to four decimal places.

A) 2.3219 B) 0.4307 C) 0.7959 D) 2.0000