Mini Lecture 8.3

The Algebra of Functions

Learning Objectives:

1. Find the domain of a function.
2. Use the algebra of functions to combine functions and determine domains.

Examples:

State the domain of each function.

1. a. $f(x)=3 x-1$
b. $g(x)=\frac{4 x}{x-2}$
c. $h(x)=x+\frac{2}{6-x}$
d. $p(x)=\frac{1}{x+5}+\frac{7}{x-9}$
2. Let $f(x)=x^{2}-2 x$ and $g(x)=x+3$. Find the following;
a. $(f+g)(x)$
b. the domain of $f+g$
c. $(f+g)(-2)$
3. Let $f(x)=\frac{5}{x+2}$ and $g(x)=\frac{6}{x-1}$. Find the following;
a. $(f+g)(x)$
b. The domain of $f+g$
4. Let $f(x)=x^{2}+1$ and $g(x)+x=3$. Find the following;
a. $(f+g)(x)$
b. $(f+g)(-2)$
c. $(f-g)(x)$
d. $(f-g)(0)$
e. $\left(\frac{f}{g}\right)(-2)$

Teaching Notes:

- Students need to be reminded that division by zero is undefined. The value of " x " cannot be anything that would make the denominator of a fraction zero.
- Students often exclude values from the domain that would make the numerator zero, warn against this.
- Show students why the radicand of a square root function must be greater than or equal to zero. This is a good place to use the graphing calculator so students can "see" what happens.

Answers: 1. a. $(-\infty, \infty)$ b. $(-\infty, 2)$ or $(2, \infty)$ c. $(-\infty, 6)$ or $(6, \infty)$
d. $(-\infty,-5)$ or $(-5,9)$ or $(9, \infty)$
2. a. $x^{2}-x+3$ b. $(-\infty, \infty)$
c. 3 4. a. $\frac{5}{x+2}+\frac{6}{x-1}$
b. $(-\infty,-2)$ or $(-2,1)$ or $(1, \infty)$
4. a. $x^{2}+x-2$ b. 0 c. $x^{2}-x+4$ d. 4 e. -1

Mini Lecture 8.4

Composite and Inverse Functions

Learning Objectives:

1. Form composite functions.
2. Verify inverse functions.
3. Find the inverse of a function.
4. Use the horizontal line test to determine if a function has an inverse function.
5. Use the graph of a one-to-one function to graph its inverse function.

Examples:

1. Given $f(x)=x-1$ and $g(x)=x^{2}-2$, find each of the following composite functions.
a. $(f \circ g)(x)$
b. $(g \circ f)(x)$
2. Given $f(x)=\frac{x-1}{2}$ and $g(x)=2 x+1$, show that each function is the inverse of the other.
a. $f(g(x))$
b. $g(f(x))$
3. Find the inverse of each given function:
a. $f(x)=2 x-1$
b. $g(x)=4 y$
4. If the points $(4,2),(6,3)$ and $(8,4)$ are on the graph of f, give three points on the graph of f^{-1}.

Teaching Notes:

- $\quad f \circ g$ and $g \circ f$ are not the same.
- In the notation, $f^{-1},-1$ is not an exponent. f^{-1} represents the inverse function of x.
- $\quad f\left(f^{-1}(x)\right)=x$ and $f^{-1}(f(x))=x$.
- If f and g are inverses, then $f(g(x))=x$ and $g(f(x))=x$.
- Use the horizontal line test for inverse function.
- Only one-to-one functions have inverse functions.

Answers: 1. a. $x^{2}-3$ b. $x^{2}-2 x-1$ 2. a. $f(g(x))=f(2 x+1)=\frac{2 x+1-1}{2}=\frac{2 x}{2}=x$
b. $g(f(x))=g\left(\frac{x-1}{2}\right)=2\left(\frac{x-1}{2}\right)+1=x-1+1=x \quad$ 3. a. $f^{-1}=\frac{x+1}{2} \quad$ b. $g^{-1}=\frac{x}{4}$ or $\frac{1}{4} x$
4. $(2,4),(3,6),(4,8)$

The graph below depicts functions f and g. The entire graph of both functions is shown in the figure.

1. Use the graph to find the indicated functional values.
(a) $(f+g)(3)$
(b) $(f-g)(-1)$
(c) $\frac{f}{g}(5)$
(d) Find the domain and range of f

2. Use the graph to find the indicated functional values.
(a) $\quad f(g(2))$
(b) $\quad f(g(-1))$
(c) $\quad g(f(3))$
(d) $\quad g(g(3))$
