Mini Lecture 8.3

The Algebra of Functions

Learning Objectives:

- 1. Find the domain of a function.
- 2. Use the algebra of functions to combine functions and determine domains.

Examples:

State the domain of each function.

1. a.
$$f(x) = 3x - 1$$
 b. $g(x) = \frac{4x}{x - 2}$ c. $h(x) = x + \frac{2}{6 - x}$ d. $p(x) = \frac{1}{x + 5} + \frac{7}{x - 9}$

2. Let $f(x) = x^2 - 2x$ and g(x) = x + 3. Find the following;

a.
$$(f+g)(x)$$
 b. the domain of $f+g$ c. $(f+g)(-2)$

- 3. Let $f(x) = \frac{5}{x+2}$ and $g(x) = \frac{6}{x-1}$. Find the following; a. (f+g)(x) b. The domain of f+g
- 4. Let $f(x) = x^2 + 1$ and g(x) + x = 3. Find the following;

a.
$$(f+g)(x)$$

b. $(f+g)(-2)$
c. $(f-g)(x)$
d. $(f-g)(0)$
e. $\left(\frac{f}{g}\right)(-2)$

Teaching Notes:

- Students need to be reminded that division by zero is undefined. The value of "x" cannot be anything that would make the denominator of a fraction zero.
- Students often exclude values from the domain that would make the numerator zero, warn against this.
- Show students why the radicand of a square root function must be greater than or equal to zero. This is a good place to use the graphing calculator so students can "see" what happens.

Answers: 1. a.
$$(-\infty, \infty)$$
 b. $(-\infty, 2)$ or $(2, \infty)$ c. $(-\infty, 6)$ or $(6, \infty)$
d. $(-\infty, -5)$ or $(-5, 9)$ or $(9, \infty)$ 2. a. $x^2 - x + 3$ b. $(-\infty, \infty)$ c. 3 4. a. $\frac{5}{x+2} + \frac{6}{x-1}$
b. $(-\infty, -2)$ or $(-2, 1)$ or $(1, \infty)$ 4. a. $x^2 + x - 2$ b. 0 c. $x^2 - x + 4$ d. 4 e. -1

Mini Lecture 8.4

Composite and Inverse Functions

Learning Objectives:

- 1. Form composite functions.
- 2. Verify inverse functions.
- 3. Find the inverse of a function.
- 4. Use the horizontal line test to determine if a function has an inverse function.
- 5. Use the graph of a one-to-one function to graph its inverse function.

Examples:

- 1. Given f(x) = x 1 and $g(x) = x^2 2$, find each of the following composite functions. a. $(f \circ g)(x)$ b. $(g \circ f)(x)$
- 2. Given $f(x) = \frac{x-1}{2}$ and g(x) = 2x+1, show that each function is the inverse of the other.

a.
$$f(g(x))$$
 b. $g(f(x))$

- 3. Find the inverse of each given function: a. f(x) = 2x - 1 b. g(x) = 4y
- 4. If the points (4, 2), (6, 3) and (8, 4) are on the graph of f, give three points on the graph of f^{-1} .

Teaching Notes:

- $f \circ g$ and $g \circ f$ are not the same.
- In the notation, f^{-1} , -1 is not an exponent. f^{-1} represents the inverse function of x.
- $f(f^{-1}(x)) = x$ and $f^{-1}(f(x)) = x$.
- If f and g are inverses, then f(g(x)) = x and g(f(x)) = x.
- Use the horizontal line test for inverse function.
- Only one-to-one functions have inverse functions.

Answers: 1. a.
$$x^2 - 3$$
 b. $x^2 - 2x - 1$ 2. a. $f(g(x)) = f(2x+1) = \frac{2x+1-1}{2} = \frac{2x}{2} = x$
b. $g(f(x)) = g\left(\frac{x-1}{2}\right) = 2\left(\frac{x-1}{2}\right) + 1 = x - 1 + 1 = x$ 3. a. $f^{-1} = \frac{x+1}{2}$ b. $g^{-1} = \frac{x}{4}$ or $\frac{1}{4}x$
4. (2, 4), (3, 6), (4, 8)

 $\begin{array}{c} Copyright @ 2013 \ Pearson \ Education, \ Inc. \\ ML \textbf{-} 59 \end{array}$

The graph below depicts functions f and g. The entire graph of both functions is shown in the figure.

- 1. Use the graph to find the indicated functional values.
 - (a) (f+g)(3)
 - (b) (f g)(-1)

(c)
$$\frac{f}{g}(5)$$

(d) Find the domain and range of f

2. Use the graph to find the indicated functional values.

- (a) f(g(2))
- (b) f(g(-1))
- (c) g(f(3))
- (d) g(g(3))