Mini Lecture 11.1

The Square Root Property and Completing the Square; Distance and Midpoint Formulas

Learning Objectives:

1. Solve quadratic equations using the square root property.
2. Complete the square of a binomial.
3. Solve quadratic equations by completing the square.
4. Solve problems using the square root property.
5. Find the distance between two points.
6. Find the midpoint of a line segment.

Examples:

1. Solve using the square root property.
a. $3 x^{2}=18$
b. $5 x^{2}-7=0$
c. $16 x^{2}+25=0$
d. $(x-2)^{2}=3$
2. What term should be added to each binomial so that it becomes a perfect square trinomial? Write and factor the trinomial.
a. $x^{2}+8 x$
b. $x^{2}-5 x$
c. $x^{2}+\frac{1}{2} x$
3. Solve by completing the square.
a. $x^{2}+10 x+12=0$
b. $2 x^{2}-6 x-5=0$
4. Use the compound interest formula to find the annual interest rate, r.
a. In 2 years, an investment of $\$ 3000$ grows to $\$ 3307.50$.
b. In 4 years, an investment of $\$ 6000$ grows to $\$ 8784.60$.
5. Find the distance between each pair of points. If necessary, round answers to two decimals places.
a. $(6,4)$ and $(-2,2)$
b. $(1,4)$ and $(-3,5)$
6. Find the midpoint of the line segment with the given endpoints.
a. $(3,7)$ and $(9,5)$
b. $(3,-7)$ and $(-4,-2)$

Teaching Notes:

- The square root property states if u is an algebraic express and d is a non-zero real number, then $u^{2}=d$ has two solutions. If $u^{2}=d$, then $u=\sqrt{d}$ or $u=-\sqrt{d}$.
- When completing the square, if $x^{2}+b x$ is a binomial, then by adding the square of half the coefficient of $x,\left(\frac{b}{2}\right)^{2}$, a perfect square trinomial will result $x^{2}+b x+\left(\frac{b}{2}\right)^{2}=\left(x+\frac{b}{x}\right)^{2}$.
- If solving quadratic equations by completing the square, be sure when you add a constant term to one side of the equation to complete the square, be certain to add the same constant to the other side of the equation.
- The formula for compound interest is $A=P(1+r)^{t}$ where A is the account balance, t is the years, P is the principal originally invested, and r is the interest rate.
- The distance, d, between the points (x, y) and $\left(x_{2}, y_{2}\right)$, the coordinates of the segment's midpoints are: $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$
Answers: 1. a. $\pm \sqrt{6}$
b. $\pm \frac{\sqrt{35}}{5}$
c. $\pm \frac{5}{4} i$
d. $2 \pm \sqrt{3} \quad$ 2. a. $x^{2}+8 x+16=(x+4)^{2}$
b. $x^{2}-5 x+\frac{25}{4}=\left(x-\frac{5}{2}\right)^{2}$ c. $x^{2}+\frac{1}{2} x+\frac{1}{16}=\left(x+\frac{1}{4}\right)^{2}$

3. a. $-5 \pm \sqrt{13}$
b. $\frac{3 \pm \sqrt{19}}{2}$
4. a. 5% b. 10% 5.a. 10 units b. $\sqrt{17}$ or 4.12 units $6 . a .(6,6)$ b. $\left(-\frac{1}{2},-\frac{9}{2}\right)$

Mini Lecture 11.2

The Quadratic Formula

Learning Objectives:

1. Solve quadratic equations using the quadratic formula.
2. Use the discriminant to determine the number and type of solutions.
3. Determine the most efficient method to use when solving a quadratic equations.
4. Write quadratic equations from solutions.
5. Use the quadratic formula to solve problems.

Examples:

1. Solve using the quadratic equation.
a. $2 x^{2}-5 x=3$
b. $3 x^{2}-2 x+3=0$
c. $x^{2}-6 x+3=0$
d. $3 x^{2}+16 x=-5$
e. $12 x^{2}-4 x+5=0$
f. $x^{2}+6 x=-13$

- Which problems in \#1 could have been solved by factoring?

2. Find the value of the discriminant. Tell what kind and how many solutions each equation would have if solved.
a. $9 x^{2}-6 x+1=0$
b. $5 x^{2}=4 x-6$
c. $x^{2}+4 x=1$
d. $3 x^{2}-4 x=2=0$
e. $2 x^{2}-2 x=24$
f. $4 x^{2}-1=0$
3. Write an equation with the given solution set.
a. $\{4,-2\}$
b. $\left\{\frac{-2}{3}, \frac{1}{5}\right\}$
c. $\{-\sqrt{5}, \sqrt{5}\}$
d. $\{3 i,-3 i\}$

Teaching Notes:

- Students must memorize the quadratic formula.
- The quadratic formula can always be used to solve a quadratic equation.
- Students need to be reminded of the standard form of a quadratic equation,
$a x^{2}+b x+c=0$. When using the quadratic formula the equation should be in standard form.
- Have students write the quadratic formula each time they work a problem.
- Students need to have a firm grasp on how to choose a method for solving equations.
Answers: 1. a. $\left\{\frac{-1}{2}, 3\right\}$
b. $\left\{\frac{1 \pm 2 i \sqrt{2}}{3}\right\}$
c. $\{3 \pm \sqrt{6}\}$
d. $\left\{\frac{-1}{3}, 5\right\}$
e. $\{-3 \pm 2 i\}$
f. $\left\{\frac{2 \pm \sqrt{10}}{2}\right\}$ 2. a. $D=0$; one rational solution b. $D=-104$; two imaginary solutions
c. $D=20$: two irrational solutions d. $D=-8$; two imaginary solutions e. $D=196$; two rational solutions f. $D=16$; two rational solutions

Mini Lecture 11.3

Quadratic Functions and Their Graphs

Learning Objectives:

1. Recognize characteristics of parabolas.
2. Graph parabolas in the form $f(x)=a(x-h)^{2}+k$.
3. Graph parabolas in the form $f(x)=a x^{2}+b x+c$.
4. Determine a quadratic function's minimum or maximum value.
5. Solve problems involving a function's minimum of maximum value.

Examples:

1. Graph the quadratic function. Identify the vertex, x and y intercepts. Use the graph to identify the function's domain and its range.
a. $f(x)=-(x+2)^{2}-3$
b. $f(x)=x^{2}-2 x+2$
c. $f(x)=(x+1)^{2}+4$
d. $f(x)=x^{2}-4$

Teaching Notes:

- The graph of a quadratic function $f(x)=a x^{2}+b x+c, a \neq 0$ is called a parabola.
- Parabolas are symmetric with respect to an imaginary line which is called the axis of symmetry.
- To graph quadratic functions with equations in the form $f(x)=a(x-h)^{2}+k$
* Determine if the parabola opens up $(a>0)$ or opens down $(a<0)$.
* Determine the vertex of the parabola (h, k).
* Determine the x-intercept by replacing $f(x)$ with 0 and solving.
* Determine the y-intercept by replacing x with 0 and solving.
- The vertex of a parabola whose equation is $f(x)=a x^{2}+b x+c$ is $\left(\frac{-b}{2 a}, f\left(\frac{-b}{2 a}\right)\right)$.
- With a quadratic function, a maximum or minimum value will occur at the vertex point * if $a>0$, then the minimum occurs at $x=\frac{-b}{2 a}$ and the minimum value is $f\left(\frac{-b}{2 a}\right)$.
* if $a<0$, then the maximum occurs at $x=\frac{-b}{2 a}$ and the maximum value is $f\left(\frac{-b}{2 a}\right)$.

Answers:

1. a. vertex $(-2,-3)$ x-intercept - none y-intercept $-(0,-7)$
domain $(-\infty, \infty)$
range $(-\infty,-3]$

2. b. vertex $(1,1)$ x-intercept - none y-intercept - (0,2) domain $(-\infty, \infty)$
range $[1, \infty)$
3. c. vertex $(-1,4)$
x-intercept $-(-3,0)(1$
y-intercept $-(0,3)$
domain $(-\infty, \infty)$
range $(-\infty, 4]$

4. d. vertex $(0,4)$
x-intercept $-(-2,0)(2,0)$
y-intercept - $(0,-4)$
domain $(-\infty, \infty)$
range $[-4, \infty)$

Mini Lecture 11.4

Equations Quadratic in Form

Learning Objectives:

1. Solve equations that are quadratic in form.

Examples:

Solve.

1. a. $x^{4}-x^{2}=12$
b. $y^{4}+15=8 y^{2}$
c. $4 x^{4}-7 x^{2}-2=0$
2. a. $(y+3)^{2}-3(y+3)=70$
b. $(x-2)^{2}-4(x-2)-60=0$
c. $3(4 a-1)^{2}+(4 a-1)=10$
3. a. $x-\sqrt{x}-2=0$
b. $3 y+\sqrt{y}=2$
c. $x-6 \sqrt{x}+8=0$
4. a. $y^{\frac{2}{3}}-2 y^{\frac{1}{3}}-8=0$
b. $x^{-2}-8 x^{-1}+7=0$
c. $y^{\frac{2}{3}}-5 y^{\frac{1}{3}}+6=0$

Teaching Notes:

- An equation that is "quadratic in form" can be rewritten as a quadratic equation using an appropriate substitution.
- Remind students that if both sides of an equation are raised to an even power, they must check the solutions for extraneous solutions.
- A fourth degree equation will have four solutions.

Answers: 1. a. $\pm 2, \pm 3 i$
b. $\pm \sqrt{5}, \pm \sqrt{3} \quad$ c. $\pm \frac{1}{2} i, \pm \sqrt{2}$
2. a. $7,-10$
b. $12,-4$ c. $\frac{2}{3},-\frac{1}{4}$
3. a. 4 b. $\frac{4}{9}$
c. 16,4
4. a. $64,-8$
b. $1, \frac{1}{7}$
c. 8,27

