Mini Lecture 11.1

The Square Root Property and Completing the Square; Distance and Midpoint Formulas

Learning Objectives:

- 1. Solve quadratic equations using the square root property.
- 2. Complete the square of a binomial.
- 3. Solve quadratic equations by completing the square.
- 4. Solve problems using the square root property.
- 5. Find the distance between two points.
- 6. Find the midpoint of a line segment.

Examples:

- 1. Solve using the square root property.
 - a. $3x^2 = 18$ b. $5x^2 - 7 = 0$ c. $16x^2 + 25 = 0$ d. $(x-2)^2 = 3$

2. What term should be added to each binomial so that it becomes a perfect square trinomial? Write and factor the trinomial.

a.
$$x^2 + 8x$$
 b. $x^2 - 5x$ c. $x^2 + \frac{1}{2}x$

- 3. Solve by completing the square. a. $x^2 + 10x + 12 = 0$ b. $2x^2 - 6x - 5 = 0$
- 4. Use the compound interest formula to find the annual interest rate, *r*.
 a. In 2 years, an investment of \$3000 grows to \$3307.50.
 b. In 4 years, an investment of \$6000 grows to \$8784.60.
- 5. Find the distance between each pair of points. If necessary, round answers to two decimals places.
 a. (6, 4) and (-2, 2)
 b. (1, 4) and (-3, 5)
- 6. Find the midpoint of the line segment with the given endpoints.
 a. (3, 7) and (9, 5)
 b. (3, -7) and (-4, -2)

Teaching Notes:

- The square root property states if u is an algebraic express and d is a non-zero real number, then $u^2 = d$ has two solutions. If $u^2 = d$, then $u = \sqrt{d}$ or $u = -\sqrt{d}$.
- When completing the square, if $x^2 + bx$ is a binomial, then by adding the square of half the coefficient of x, $\left(\frac{b}{2}\right)^2$, a perfect square trinomial will result

$$x^{2} + bx + \left(\frac{b}{2}\right)^{2} = (x + \frac{b}{x})^{2}.$$

- If solving quadratic equations by completing the square, be sure when you add a constant term to one side of the equation to complete the square, be certain to add the same constant to the other side of the equation.
- The formula for compound interest is $A = P(1+r)^t$ where A is the account balance, t is the years, P is the principal originally invested, and r is the interest rate.
- The distance, d, between the points (x, y) and (x_2, y_2) , the coordinates of the segment's

midpoints are: $\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$ <u>Answers</u>: 1. a. $\pm \sqrt{6}$ b. $\pm \frac{\sqrt{35}}{5}$ c. $\pm \frac{5}{4}i$ d. $2 \pm \sqrt{3}$ 2. a. $x^2 + 8x + 16 = (x+4)^2$ b. $x^2 - 5x + \frac{25}{4} = (x - \frac{5}{2})^2$ c. $x^2 + \frac{1}{2}x + \frac{1}{16} = (x + \frac{1}{4})^2$ 3. a. $-5 \pm \sqrt{13}$ b. $\frac{3 \pm \sqrt{19}}{2}$ 4. a. 5% b. 10% 5.a. 10 units b. $\sqrt{17}$ or 4.12 units 6.a. (6, 6) b. $\left(-\frac{1}{2}, -\frac{9}{2}\right)$

Mini Lecture 11.2

The Quadratic Formula

Learning Objectives:

- 1. Solve quadratic equations using the quadratic formula.
- 2. Use the discriminant to determine the number and type of solutions.
- 3. Determine the most efficient method to use when solving a quadratic equations.
- 4. Write quadratic equations from solutions.
- 5. Use the quadratic formula to solve problems.

Examples:

- 1.Solve using the quadratic equation.
a. $2x^2 5x = 3$ b. $3x^2 2x + 3 = 0$ c. $x^2 6x + 3 = 0$ d. $3x^2 + 16x = -5$ e. $12x^2 4x + 5 = 0$ f. $x^2 + 6x = -13$
 - Which problems in #1 could have been solved by factoring?
- 2. Find the value of the discriminant. Tell what kind and how many solutions each equation would have if solved.
 - a. $9x^2 6x + 1 = 0$ b. $5x^2 = 4x 6$ c. $x^2 + 4x = 1$ d. $3x^2 4x = 2 = 0$ e. $2x^2 2x = 24$ f. $4x^2 1 = 0$
- 3. Write an equation with the given solution set.
 - a. $\{4, -2\}$ b. $\{\frac{-2}{3}, \frac{1}{5}\}$ c. $\{-\sqrt{5}, \sqrt{5}\}$ d. $\{3i, -3i\}$

Teaching Notes:

- Students <u>must</u> memorize the quadratic formula.
- The quadratic formula can always be used to solve a quadratic equation.
- Students need to be reminded of the standard form of a quadratic equation, $ax^2 + bx + c = 0$. When using the quadratic formula the equation should be in standard form.
- Have students write the quadratic formula each time they work a problem.
- Students need to have a firm grasp on how to choose a method for solving equations.

Answers: 1. a.
$$\left\{\frac{-1}{2}, 3\right\}$$
 b. $\left\{\frac{1 \pm 2i\sqrt{2}}{3}\right\}$ c. $\left\{3 \pm \sqrt{6}\right\}$ d. $\left\{\frac{-1}{3}, 5\right\}$ e. $\left\{-3 \pm 2i\right\}$
f. $\left\{\frac{2 \pm \sqrt{10}}{2}\right\}$ 2. a. $D = 0$; one rational solution b. $D = -104$; two imaginary solutions
c. $D = 20$: two irrational solutions d. $D = -8$; two imaginary solutions e. $D = 196$; two rational solutions d. $D = -8$; two imaginary solutions e. $D = 196$; two rational solutions d. $D = -8$; two imaginary solutions e. $D = 196$; two rational solutions d. $D = -8$; two imaginary solutions e. $D = 196$; two rational solutions d. $D = -8$; two imaginary solutions e. $D = 196$; two rational solutions d. $D = -8$; two imaginary solutions e. $D = 196$; two rational solutions d. $D = -8$; two imaginary solutions e. $D = 196$; two rational solutions d. $D = -8$; two imaginary solutions e. $D = 196$; two rational solutions d. $D = -8$; two imaginary solutions e. $D = 196$; two rational solutions d. $D = -8$; two imaginary solutions e. $D = 196$; two rational solutions d. $D = -8$; two imaginary solutions e. $D = 196$; two rational solutions d. $D = -8$; two imaginary solutions e. $D = 196$; two rational solutions d. $D = -8$; two imaginary solutions e. $D = 196$; two rational solutions d. $D = -8$; two imaginary solutions e. $D = 196$; two rational solutions d. $D = -8$; two imaginary solutions e. $D = 196$; two rational solutions d. $D = -8$; two imaginary solutions e. $D = 196$; two rational solutions d. $D = -8$; two imaginary solutions e. $D = 196$; two rational solutions d. $D = -104$; two imaginary solutions d. $D = -104$; two imagi

c. D = 20: two irrational solutions d. D = -8; two imaginary solutions e. D = 196; two rational solutions f. D = 16; two rational solutions

Mini Lecture 11.3

Quadratic Functions and Their Graphs

Learning Objectives:

- 1. Recognize characteristics of parabolas.
- 2. Graph parabolas in the form $f(x) = a(x-h)^2 + k$.
- 3. Graph parabolas in the form $f(x) = ax^2 + bx + c$.
- 4. Determine a quadratic function's minimum or maximum value.
- 5. Solve problems involving a function's minimum of maximum value.

Examples:

1. Graph the quadratic function. Identify the vertex, *x* and *y* intercepts. Use the graph to identify the function's domain and its range.

a.
$$f(x) = -(x+2)^2 - 3$$

b. $f(x) = x^2 - 2x + 2$
c. $f(x) = (x+1)^2 + 4$
d. $f(x) = x^2 - 4$

Teaching Notes:

- The graph of a quadratic function $f(x) = ax^2 + bx + c$, $a \neq 0$ is called a parabola.
- Parabolas are symmetric with respect to an imaginary line which is called the **axis of symmetry**.
- To graph quadratic functions with equations in the form $f(x) = a(x-h)^2 + k$
 - * Determine if the parabola opens up (a > 0) or opens down (a < 0).
 - * Determine the vertex of the parabola (h, k).
 - * Determine the *x*-intercept by replacing f(x) with 0 and solving.
 - * Determine the *y*-intercept by replacing *x* with 0 and solving.
- The vertex of a parabola whose equation is $f(x) = ax^2 + bx + c$ is $\left(\frac{-b}{2a}, f\left(\frac{-b}{2a}\right)\right)$.
- With a quadratic function, a maximum or minimum value will occur at the vertex point

* if a > 0, then the minimum occurs at $x = \frac{-b}{2a}$ and the minimum value is $f\left(\frac{-b}{2a}\right)$. * if a < 0, then the maximum occurs at $x = \frac{-b}{2a}$ and the maximum value is $f\left(\frac{-b}{2a}\right)$.

1. b. vertex (1, 1) x-intercept – none y-intercept – (0, 2) domain $(-\infty, \infty)$ range $[1, \infty)$

	1 1 1			
	1		17	
	X		7	
		ND		
6-6-4-8	2 1		23	45
			Ŧ	
	- 4			
				+ +

- 1. c. vertex (-1, 4)x-intercept -(-3, 0)(1)y-intercept -(0, 3)domain $(-\infty, \infty)$ range $(-\infty, 4]$
- 1. d. vertex (0, 4)x-intercept – (-2, 0)(2, 0)y-intercept – (0, -4)domain $(-\infty, \infty)$ range $[-4, \infty)$

		c	Y		
				/	
		X		1	
		3			
		, ž	/		
	+	1			- X
					⊢÷.
8-5-	13:	<u>)</u>	1/2	31	÷-f
-			-/-	* 1 '	Ĥ
		13			-
		1			
		Ż			
		-0			

Mini Lecture 11.4 Equations Quadratic in Form

Learning Objectives:

1. Solve equations that are quadratic in form.

Examples:

Solve.

1. a. $x^4 - x^2 = 12$ b. $y^4 + 15 = 8y^2$ c. $4x^4 - 7x^2 - 2 = 0$ 2. a. $(y+3)^2 - 3(y+3) = 70$ b. $(x-2)^2 - 4(x-2) - 60 = 0$ c. $3(4a-1)^2 + (4a-1) = 10$ 3. a. $x - \sqrt{x} - 2 = 0$ b. $3y + \sqrt{y} = 2$ c. $x - 6\sqrt{x} + 8 = 0$ 4. a. $y^{\frac{2}{3}} - 2y^{\frac{1}{3}} - 8 = 0$ b. $x^{-2} - 8x^{-1} + 7 = 0$ c. $y^{\frac{2}{3}} - 5y^{\frac{1}{3}} + 6 = 0$

Teaching Notes:

- An equation that is "quadratic in form" can be rewritten as a quadratic equation using an appropriate substitution.
- Remind students that if both sides of an equation are raised to an even power, they must check the solutions for extraneous solutions.
- A fourth degree equation will have four solutions.

Answers: 1. a.
$$\pm 2, \pm 3i$$
 b. $\pm \sqrt{5}, \pm \sqrt{3}$ c. $\pm \frac{1}{2}i, \pm \sqrt{2}$ 2. a. 7, -10 b. 12, -4 c. $\frac{2}{3}, -\frac{1}{4}$
3. a. 4 b. $\frac{4}{9}$ c. 16, 4 4. a. 64, -8 b. 1, $\frac{1}{7}$ c. 8, 27