Mini Lecture 12.1

Exponential Functions

Learning Objectives:

1. Evaluate exponential functions.
2. Graph exponential functions.
3. Evaluate functions with base e.
4. Use compound interest formulas.

Examples:

1. Approximate each number using a calculator, round your answer to two decimal places.
a. $2^{1.2}$
b. $4^{\sqrt{2}}$
c. $e^{1.1}$
d. $e^{-0.25}$
2. Graph each function by making a table of coordinates.
a. $f(x)=3^{x}$
b. $g(x)=\left(\frac{2}{3}\right)^{x}$
3. Graph f and g in the same rectangular coordinate system. Select integers from -2 to 2 for x. Then describe how the graph of g is related to the graph of f.
a. $f(x)=4^{x}$ and $g(x)=4^{x+1}$
b. $f(x)=3^{x}$ and $g(x)=3^{x}+2$
4. Find an accumulated value of an investment of $\$ 7000$ for 5 years at an interest rate of 4% if the money is:
a. compounded monthly.
b. compounded semi-annually.
c. compounded continuously.

Use the compound interest formulas to solve. Round answers to the nearest cent.

Teaching Notes:

- The exponential function f with base b is $f(x)=b^{x}$ or $y=b^{x}, b>0$ and $b \neq 1$ and x is any real number.
- The domain of an exponential function consists of all real numbers.
- The range of an exponential function consists of all positive real numbers.
- If $b>1$, the graph of the exponential function will go up to the right and is an increasing function. The larger the value of b, the steeper the increase.
- If $0<b<1$, the graph of the exponential function goes down to the right and is a decreasing function. The small the value of b, the steeper the decrease.
- An irrational number, e, often appears as a base in applied exponential functions.
- The number e is called the natural base. " e " $\approx 2.71828 \ldots$
- The function $f(x)=e$ is called the natural exponential function.
- Formulas for compound interest:
* for n compounding per year $A=P\left(1+\frac{r}{n}\right)^{n t}$
* for continuous compounding $A=P e^{r t}$

After t years, the balance A in an account with principal P and as annual interest rate r.
Answers: 1. a. 2.30
b. 7.10
c. 3.00
d. 0.78 2. a

b.

3. a. The graph of g is the graph of f shifted 1 unit to the left b . The graph of g is the graph of f shifted up 2 units 4. a. $\$ 8546.98$ b. $\$ 8532.96$ c. $\$ 8549.82$

Mini Lecture 12.2

Logarithmic Functions

Learning Objectives:

1. Change from logarithmic to exponential form.
2. Change from exponential to logarithmic form.
3. Evaluate logarithms.
4. Use basic logarithmic properties.
5. Graph logarithmic functions.
6. Find the domain of a logarithmic function.
7. Use common logarithms.
8. Use natural logarithms.

Examples:

1. Write each equation in its equivalent exponential form.
a. $5=\log _{2} x$
b. $2=\log _{b} 16$
c. $\log _{5} 18=y$
2. Write each equation in its equivalent logarithmic form.
a. $3^{4}=81$
b. $b^{3}=8$
c. $e^{y}=11$
3. Evaluate.
a. $\log _{10} 10000$
b. $\log _{5} 5$
c. $\log _{125} 5$
d. $\log _{4} 4$
e. $\log _{7} 1$
f. $\log _{3} 3^{4}$
g. $5^{\log _{5} 12}$
h. $\ln 1$
i. $\ln e$
4. Graph $f(x)=4^{x}$ and $g(x)=\log _{4} x$ in the same rectangular coordinate system.
5. Find the domain of each function:
a. $f(x)=\log _{2}(x-3)$
b. $g(x)=\ln (5-x)$

Teaching Notes:

- The function $f(x)=\log _{b} x$ is the logarithmic function with base \boldsymbol{b}.
- The logarithmic form $y=\log _{b} x$ is equivalent to the exponential form $b^{y}=x$.
- The domain of a logarithmic function of the form $f(x)=\log _{b} x$ is the set of all positive real numbers.
- The domain of $f(x)=\log _{b}[g(x)]$ consists of all x for which $g(x)>0$.
- The logarithmic function with base 10 is called the common logarithmic function.
- Properties of Common Logarithms

General Properties	Common Logarithms	Natural Logarithms
$\log _{b} 1=0$	$\log 1=0$	$\ln 1=0$
$\log _{b} b=1$	$\log 10=1$	$\ln e=1$
$\log _{b} b^{x}=x$	$\log 10^{x}=x$	$\ln e^{\mathrm{x}}=x$
$\mathrm{~b}^{\log _{b} x}=x$	$10^{\log \mathrm{x}}=x$	$e^{\ln \mathrm{x}}=x$

Answers: 1. a. $2^{5}=x \quad$ b. $b^{2}=16 \quad$ c. $5^{y}=18 \quad$ 2. a. $4=\log _{3} 81 \quad$ b. $3=\log _{b} 8 \quad$ c. $y=\log _{e} 11$ 3. a. 4 b. 1 c. $\frac{1}{3}$ d. 1 e. 0 f. 4 g. 12 h. 0 i. 14 .
5. a. $(3, \infty)$ b. $(-\infty, 5)$

Mini Lecture 12.3

Properties of Logarithms

Learning Objectives:

1. Use the product rule.
2. Use the quotient rule.
3. Use the power rule.
4. Expand logarithmic expressions.
5. Condense logarithmic expressions.
6. Use the change-of-base property.

Examples:

Expand.

1. a. $\log _{3}(4 \cdot 18)$
b. $\log _{8}(12 \cdot 8)$
c. $\log _{5}(5 x)$
2. a. $\log _{3}\left(\frac{3}{x}\right)$
b. $\ln \left(\frac{e^{3}}{5}\right)$
c. $\log \left(\frac{10}{x}\right)$
3.

a. $\log _{4} 7^{3}$
b. $\log _{2} y^{3} z$
c. $\log _{5} 3^{\frac{1}{2}}$
4. a. $\log \left(\frac{x^{2}}{\sqrt[3]{y}}\right)$
b. $\log _{5} \frac{x}{y^{4}}$
c. $\log _{7}\left(\frac{6 y^{2}}{\sqrt[4]{x}}\right)$

Condense. Write as a single logarithm.
5.
a. $\log _{8} 5+\log _{8} x$
b. $\log _{6} 18+\log _{6} 2-\log _{6} 9$
c. $2 \log _{3} 5+\log _{3} 2$
d. $\log _{2} x+\log _{2}(x-3)-\log _{2} 3$

Use the change-of-base property and your calculator to find the decimal approximation.
6.
a. $\log _{6} 14$
b. $\log _{9} 27$
c. $\log _{7} 15$

Teaching Notes:

- Students must know properties and rules of logarithms and since this will be new to most students, a lot of practice is recommended.
- As rules are introduced, show several examples with numbers instead of letters.
- Make sure students know how to use their calculators to find decimal approximations.

Answers: 1. a. $\log _{4}+\log _{3} 18$ b. $\log _{8} 12+1$ c. $1+\log _{5} x \quad$ 2. a. $1-\log _{3} x \quad$ b. $3-\ln 5$
$\begin{array}{lllll}\text { c. } 1-\log x & \text { 3. a. } 3 \log _{4} 7 & \text { b. } 3 \log _{2} y+\log _{2} z & \text { c. } \frac{1}{2} \log _{5} 3 \quad \text { 4. a. } 2 \log x-\frac{1}{3} \log y\end{array}$
b. $\log _{5} x-4 \log _{5} y \quad$ c. $\log _{7} 6+2 \log _{7} y-\frac{1}{4} \log _{7} x \quad$ 5. a. $\log _{8} 5 x \quad$ b. $\log _{6} 4 \quad$ c. $\log _{3} 50$
d. $\log _{2}\left(\frac{x^{2}-3 x}{3}\right)$
6. a. 1.4729 b. 1.5 c. 1.3917

Mini Lecture 12.4

Exponential and Logarithmic Equations

Learning Objectives:

1. Use like bases to solve exponential equations.
2. Use logarithms to solve exponential equations.
3. Use exponential form to solve logarithmic equations.
4. Use the one-to-one property of logarithms to solve logarithmic equations.
5. Solve applied problems involving exponential and logarithmic equations.

Examples:

1. Solve
a. $3^{x}=\frac{1}{81}$
b. $8^{x}=16$
c. $27^{x}=9$
2. Find the solution set and then use a calculator to obtain a decimal approximation to two decimal places for the solution.
a. $3^{x}=120$
b. $5^{3 x}=30$
3. Solve.
a. $\log _{4}(x-3)=2$
b. $\log _{2} x+\log _{2}(x-2)=3$
c. $\log _{4}(x+1)-\log _{4}(x-2)=1$
d. $5 \ln 2 x=15$

Teaching Notes:

- An exponential equation is an equation containing a variable with an exponent.
- To solve exponential equations, express each side of the equal as a power of the same base and then set the exponents equal to each other. If $b^{m}=b^{n}$, then $m=n$.
- When using rational logarithms to solve exponential equations, first, isolate the exponential expressions. Next, take the natural logarithm on both sides of the equation, simplify and solve for the variable.
- A logarithmic equation is an equation containing a variable in a logarithmic expression.
- ALWAYS check proposed solutions of a logarithmic equation in the original equation. Exclude from the solution set any proposed solution that produces the logarithm of a negative number or the logarithm of 0 .

Answers: 1. a. -4 b. $\frac{4}{3}$ c. $\frac{2}{3} \quad$ 2. a. $\frac{\ln 120}{\ln 3} \approx 4.36 \quad$ b. $\frac{\ln 6}{3}=\ln 2 \approx 0.69 \quad$ 3. a. $19 \quad$ b. 4 c. 3
d. $\frac{e^{3}}{2}$

