## Mini Lecture 9.1

Reviewing Linear Inequalities and Using Inequalities in Business Applications

## Learning Objectives:

1. Review how to solve linear inequalities.
2. Use linear inequalities to solve problems involving revenue, cost, and profit.

## Examples:

1. 

a. $\quad 2 x-5 \geq 3$
b. $\quad 3 x-5 \leq 6 x+4$
c. $\quad \frac{x+1}{4}>\frac{2 x-1}{4}+\frac{3}{8}$
d. $\quad 4(x+1)>4 x+2$
e. $\quad 2 x+2 \leq 2 x-2$
2. Use the revenue and cost functions
$R(x)=100 x$
$C(x)=160,000+75 x$
to write the profit function for producing and selling $x$ units.
With the profit function, determine how many units must be produced and sold for the business to make money.

## Teaching Notes:

- When multiplying or dividing both sides of an inequality by a negative quantity, remember to reverse the direction of the inequality symbol.
- When an inequality has been solved and the variable has been eliminated and the result is a false statement, the inequality has no solution, $\varnothing$.
- When an inequality has been solved and the variable has been eliminated and the result is a true statement, the solution for the inequality is all real numbers.
- Revenue and cost function: A company produces and sells $x$ units of a product. The Revenue Function is: $R(x)=($ price per unit sold $) x$ and the Cost Function is: $C(x)=$ fixed cost + (cost per unit produced) $x$.
- The Profit, $P(x)$, generated after producing and selling $x$ units of a product is given by the profit function $P(x)=R(x)=C(x)$ where $R$ and $C$ are the revenue and cost functions, respectively.

Answers: 1.a. $\{x \mid x \geq 4\}$ or $[4, \infty) \quad-6-5-4-3-2-1001234456$
b. $\{x \mid x \geq-3\}$ or $[-3, \infty) \xrightarrow[-6-5-4-3-2-10123456]{ }$
c. $\left\{x \left\lvert\, x<\frac{1}{2}\right.\right\}$ or $\left(-\infty, \frac{1}{2}\right)$

$\xrightarrow[-6]{-5}-4$|  | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

d. $\{x \mid x$ is a real number $\}$ or $(-\infty, \infty)$ $\qquad$
e. $\varnothing$

$$
\left.\xrightarrow[-6]{ }-5 \begin{array}{lllllllllll} 
& -4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 & 5
\end{array}\right)
$$

2. $P(x)=25 x-160,000$; more than 6400 units

## Mini Lecture 9.2

## Compound Inequalities

## Learning Objectives:

1. Find the intersection of two sets.
2. Solve compound inequalities involving and.
3. Find the union of two sets.
4. Solve compound inequalities involving or.

## Examples:

1. Find the intersection of the sets.
a. $\{-3,-1,3,5\} \cap\{-5,-3,1,3\}$
b. $\{0,1,2,3,4\} \cap\{2,3,5,6\}$
c. $\{2,4,6,8\} \cap\{1,3,5,7\}$
2. Solve. Give solutions in interval notation.
a. $x+1<6$ and $x+5>8$
b. $-4 x-5<3$ and $x+1<5$
c. $-3 \leq 2 x-5<3$
d. $3<\frac{x}{2}+5 \leq 6$
3. Find the union of the sets.
a. $\{-8,-7,-6\} \cup\{-5,-4,-3\}$
b. $\{2,4,6,8\} \cup\{1,3,5,7\}$
c. $\{\operatorname{dogs}) \cup\{$ cats $\}$
4. Solve. Give solutions in interval notation.
a. $x+5 \leq-2$ or $x+5 \geq 2$
b. $4 x+2<-10$ or $5-2 x<9$
c. $2 x+5>3 x-1$ or $x-4<2 x+6$
5. Solve. Graph. Give solution in interval notation.
a. $-6<2 x+2 \leq 14$
b. $5 x-3 \leq x+1$ or $-8 x \leq-16$
c. $3(x+1)<2(x+2)$ or $2(x-1) \geq x+2$
d. $2 x+4<-8$ and $3 x+5>8$

## Teaching Notes:

- It can be helpful when graphing compound inequalities involving and to graph each inequality on the same number line with different colored highlighters. This will enable the students to "see" the intersection of the two graphs.
- Students will again need to be reminded that when multiplying both sides of an equality by a negative number, the inequality sign must be reversed.
- Compound inequalities involving or indicate intersection.
- Compound inequalities involving and indicate union.

Answers: 1. a. $\{-3,3\}$ b. $\{2,3\}$ c. $\varnothing$ 2. a. $x$; $(3,5)$ b. $(-2,4)$ c. $[1,4)$ d. $(14,12]$
3. a. $\{-8,-7,-6,-5,-4,-3\}$ b. $\{1,2,3,4,5,6,7,8\}$ c. $\{$ dogs, cats $\}$ 4. a. $(-\infty,-7] \cup[-3, \infty)$
b. $x ;(-\infty,-3) \cup(-2, \infty)$
c. $(-\infty, \infty)$ 5. a. $\overline{-6 \cdot 5 \cdot-3-2-10123456} ;(-4,6]$
b. $\overline{-6-5 \cdot 4-3-2-10123456} ;(-\infty, 1] \cup[2, \infty)$
c. $\overline{-6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 10+23456} ;(-\infty, 1) \cup[4, \infty)$
d. $\overrightarrow{-6 \cdot 5-4-3-2-10123456}$ 信

## Mini Lecture 9.3

Equations and Inequalities Involving Absolute Value

## Learning Objectives:

1. Solve absolute value equations.
2. Solve absolute value inequalities of the form $|u|<c$.
3. Solve absolute value inequalities of the form $|u|>c$.
4. Recognize absolute value inequalities with no solution or all real numbers as solutions.
5. Solve problems using absolute value inequalities.

## Examples:

1. Solve.
a. $|3 x-2|=5$
b. $2|y+4|=8$
c. $|x-2|+4=2$
d. $|2 x+1|=|3 x+4|$
2. Solve and graph the solution set on a number line. Give solutions in interval notation.
a. $|x+4.5|<1.5$
b. $|2 x-3| \geq 6$
c. $|3 x+4|<-2$
d.. $|2 x-2|>-4$

## Teaching Notes:

- The absolute value of $a$, denoted $|a|$ is the distance from 0 to $a$ on a number line.
- If $c$ is a positive real number and $x$ is an algebraic expression then rewrite an absolute value equation without absolute value bars. $|x|=c$ is equivalent to $x= \pm c$
- If $c$ is a positive number and $x$ is an algebraic expression then $|x|>c$ are the numbers $-c<x<c .|x|>c$ are the numbers $x<-\mathrm{c}$ or $x>c$. These rules are true for $\leq$ or $\geq$ respectively.
- If $c$ is a negative number and $x$ is an algebraic expression then $|x|<c$ has no solution and $|x|>c$ is true for all real numbers for which $x$ is defined.

Answers: 1. a. -1 and $\frac{7}{3}$ or $\left\{-1, \frac{7}{3}\right\}$ b. 0 and -8 or $\{0,-8\}$ c. $\varnothing$ d. -3 and -1 or $\{-3,-1\}$
2. a. $(-6,-3) \overline{-6 \cdot 5 \cdot-4 \cdot-2 \cdot 10123456}$
b. $\left(-\infty, \frac{-3}{2}\right] \cup\left[\frac{9}{2}, \infty\right) \overline{-6 \cdot-4-3-2 \cdot 101234 \overline{56}}$

d. $\{x \mid x$ is a real number $\}$ or $(-\infty, \infty)$


