Name \qquad Date \qquad

Chapter 11
 Form A

1. Find the distance between $(-2,-3)$ and $(4,6)$. If necessary, round 1 . \qquad the answer to 2 decimal places.
2. Find the midpoint of the line-segment whose endpoints are
3. \qquad $(-3,6)$ and $(-1,8)$.

For problems 3-4, (a) what constant term completes the square for each binomial. Then (b) factor the resulting square trinomial.
3. $x^{2}+14 x$
3. \qquad
4. $x^{2}-x$
4. \qquad
5. Solve by completing the square $2 x^{2}-6 x+2=0$.
5. \qquad

For problems 6-7, solve by the quadratic formula.
6. $3 x^{2}-4 x+6=0$
6. \qquad
7. $x^{2}-2 x-8=0$
7. \qquad
8. Find the distance between $(-2,-3)$ and $(4,6)$. If necessary, round
8. \qquad the answer to 2 decimals places.
9. Find the midpoint of the line-segment whose endpoints are
9. \qquad

For problems $10-11$, write a quadratic equation in standard form with the given solution set.
10. $\left\{-\frac{4}{3}, \frac{2}{5}\right\}$
10. \qquad
\qquad
\qquad
11. $\{-4 i, 4 i\}$
11.

For problems $12-16$, solve using the method of your choice.
12. $(3 x+2)^{2}-4=0$
12. \qquad
13. $(x+1)(x-3)=6$
13.
14.
14. $\frac{1}{x+1}+\frac{2}{x+2}=4$ \qquad
15. $x^{4}-6 x^{3}+5=0$
15. \qquad
16. $2 x+x^{\frac{1}{2}}-3=0$
16. \qquad
\qquad
\qquad

For problems $17-18$, find the (a) vertex, (b) x-intercepts, (c) y-intercept, (d) axis of symmetry, and (e) graph the function. Round irrational numbers to the nearest hundredth.
17. $f(x)=-(x-2)^{2}+3$
18. $f(x)=2 x^{2}-2 x-4$

17 a . \qquad
b. \qquad
c. \qquad
d. \qquad
e.

18a. \qquad
b. \qquad
c. \qquad
d. \qquad
e.

19. \qquad
19. The number of inches that a young redwood tree grows per year can be modeled by $f(x)=0.05 x^{2}+x+1$, where x represents annual rainfall in inches, and $f(x)$ is the tree's annual growth, in inches. How many inches of rainfall produces the maximum annual growth in the tree?

Name \qquad Date \qquad
20. The distance h traveled in t seconds by an object dropped from 20. \qquad a certain height is $h=16 t^{2}$. If an object is dropped from a height of 27 feet, how long will it take before the object hits the ground? Leave your answer in simplified radical form.
21. A ball is thrown straight up from a rooftop 128 feet high with
21. \qquad an initial speed of 40 feet per second. The function $s(t)=16 t^{2}+40 t+128$ models the ball's height above the ground, $s(t)$, in feet, t seconds after it was thrown. During which time period will the ball's height exceed that of the rooftop?

Chapter 11 Answers

Form A

1. $\left\{\frac{3 \pm 3 \sqrt{2}}{2}\right\}$ 2. $\{-4 \pm 3 i\}$
3a. 4 b. $(x-2)^{2}$
4a. $\frac{1}{4}$
b. $\left(x-\frac{1}{2}\right)^{2} \quad 5 \cdot \frac{3 \pm \sqrt{5}}{6}$
2. $\left\{\frac{2 \pm \sqrt{14} i}{3}\right\}$
3. $\{-2,4\}$
4. 10.82
5. $(-2,7)$
6. $8 x^{2}-2 x-3=0$
7. $x^{2}+49=0$
8. $\left\{-\frac{4}{3}, 0\right\}$
9. $\{1 \pm \sqrt{10}\}$
10. $\left\{\frac{-9 \pm \sqrt{7} i}{8}\right\}$ 15. $\{ \pm \sqrt{5}, \pm 1\}$
11. $\{1\}$
12. \therefore a. $(-4,-1)$
b. None
c. $(0,-17)$
d. $x=-4$
e.

18 a. $\left(\frac{1}{2},-\frac{9}{2}\right)$
b. $(-1,0),(2,0)$
c. $(0,-4) \quad$ d. $\quad x=\frac{1}{2} \quad$ e.
19. 10 in .
20. $\sqrt{2} \mathrm{sec}$
21. $\left(0, \frac{5}{2}\right)$

