Algebra Flashcards

by Tim Busken




           


If an equation is given, state what property of real numbers the equation represents. If an expression is given, write an equivalent expression using properties of exponents or radicals.

\[a+b=b+a\]


\[a\cdot b=b\cdot a\]


\[a\cdot(b\cdot c)=(a\cdot b)\cdot c\]


\[(a+b)+c=a+(b+c)\]


\[a+0=a\]


\[a\cdot 1= a\]


\[a\cdot\frac{1}{a}=1, \quad a\neq0\]

\[a+(-a)=0\]


\[a(b+c)=ab+ac\]


\[a\cdot0=0\]


\[2\cdot3\cdot4= (2\cdot3)\cdot4 \]


\[a^n\cdot a^m\]


\[\dfrac{a^n}{a^m}\]

\[(a^n)^m\]


\[(a\cdot b)^n\]


\[a^{-n}\]


\[a^0\]


\[\biggr(\dfrac{a}{b}\biggr)^n\]

\[a^n\cdot b^n\]


\[\dfrac{a^n}{b^n}\]


\[\biggr(\dfrac{a}{b}\biggr)^{-n}\]

\[\dfrac{a^{-m}}{b^{-n}}\]

\[a^{n/d}\]


\[\sqrt[n]{a}\cdot\sqrt[n]{b}\]


\[\frac{\sqrt[n]{a}}{\sqrt[n]{b}}\]


\[\sqrt[m]{\sqrt[n]{a}}\]


\[\sqrt[n]{a^n} \qquad \text{ assume } n \text{ is odd}\]


\[\sqrt[n]{a^n} \qquad \text{ assume } n \text{ is even}\]


\[\sqrt[n]{\frac{a}{b}}\]

\[\sqrt[n]{a\cdot b}\]